1
|
Pirnar Ž, Jager F, Geršak K. Peak amplitude of the normalized power spectrum of the electromyogram of the uterus in the low frequency band is an effective predictor of premature birth. PLoS One 2024; 19:e0308797. [PMID: 39264880 PMCID: PMC11392270 DOI: 10.1371/journal.pone.0308797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/31/2024] [Indexed: 09/14/2024] Open
Abstract
The current trends in the development of methods for non-invasive prediction of premature birth based on the electromyogram of the uterus, i.e., electrohysterogram (EHG), suggest an ever-increasing use of large number of features, complex models, and deep learning approaches. These "black-box" approaches rarely provide insights into the underlying physiological mechanisms and are not easily explainable, which may prevent their use in clinical practice. Alternatively, simple methods using meaningful features, preferably using a single feature (biomarker), are highly desirable for assessing the danger of premature birth. To identify suitable biomarker candidates, we performed feature selection using the stabilized sequential-forward feature-selection method employing learning and validation sets, and using multiple standard classifiers and multiple sets of the most widely used features derived from EHG signals. The most promising single feature to classify between premature EHG records and EHG records of all other term delivery modes evaluated on the test sets appears to be Peak Amplitude of the normalized power spectrum (PA) of the EHG signal in the low frequency band (0.125-0.575 Hz) which closely matches the known Fast Wave Low (FWL) frequency band. For classification of EHG records of the publicly available TPEHG DB, TPEHGT DS, and ICEHG DS databases, using the Partition-Synthesis evaluation technique, the proposed single feature, PA, achieved Classification Accuracy (CA) of 76.5% (AUC of 0.81). In combination with the second most promising feature, Median Frequency (MF) of the power spectrum in the frequency band above 1.0 Hz, which relates to the maternal resting heart rate, CA increased to 78.0% (AUC of 0.86). The developed method in this study for the prediction of premature birth outperforms single-feature and many multi-feature methods based on the EHG, and existing non-invasive chemical and molecular biomarkers. The developed method is fully automatic, simple, and the two proposed features are explainable.
Collapse
Affiliation(s)
- Žiga Pirnar
- Department of Multimedia, Laboratory for Biomedical Computer Systems and Imaging, Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| | - Franc Jager
- Department of Multimedia, Laboratory for Biomedical Computer Systems and Imaging, Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| | - Ksenija Geršak
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Perinatology, Division of Obstetrics and Gynecology, University Medical Center Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
2
|
Nieto-Del-Amor F, Ye-Lin Y, Monfort-Ortiz R, Diago-Almela VJ, Modrego-Pardo F, Martinez-de-Juan JL, Hao D, Prats-Boluda G. Automatic semantic segmentation of EHG recordings by deep learning: An approach to a screening tool for use in clinical practice. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 254:108317. [PMID: 38996804 DOI: 10.1016/j.cmpb.2024.108317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND AND OBJECTIVE Preterm delivery is an important factor in the disease burden of the newborn and infants worldwide. Electrohysterography (EHG) has become a promising technique for predicting this condition, thanks to its high degree of sensitivity. Despite the technological progress made in predicting preterm labor, its use in clinical practice is still limited, one of the main barriers being the lack of tools for automatic signal processing without expert supervision, i.e. automatic screening of motion and respiratory artifacts in EHG records. Our main objective was thus to design and validate an automatic system of segmenting and screening the physiological segments of uterine origin in EHG records for robust characterization of uterine myoelectric activity, predicting preterm labor and help to promote the transferability of the EHG technique to clinical practice. METHODS For this, we combined 300 EHG recordings from the TPEHG DS database and 69 EHG recordings from our own database (Ci2B-La Fe) of women with singleton gestations. This dataset was used to train and evaluate U-Net, U-Net++, and U-Net 3+ for semantic segmentation of the physiological and artifacted segments of EHG signals. The model's predictions were then fine-tuned by post-processing. RESULTS U-Net 3+ outperformed the other models, achieving an area under the ROC curve of 91.4 % and an average precision of 96.4 % in detecting physiological activity. Thresholds from 0.6 to 0.8 achieved precision from 93.7 % to 97.4 % and specificity from 81.7 % to 94.5 %, detecting high-quality physiological segments while maintaining a trade-off between recall and specificity. Post-processing improved the model's adaptability by fine-tuning both the physiological and corrupted segments, ensuring accurate artifact detection while maintaining physiological segment integrity in EHG signals. CONCLUSIONS As automatic segmentation proved to be as effective as double-blind manual segmentation in predicting preterm labor, this automatic segmentation tool fills a crucial gap in the existing preterm delivery prediction system workflow by eliminating the need for double-blind segmentation by experts and facilitates the practical clinical use of EHG. This work potentially contributes to the early detection of authentic preterm labor women and will allow clinicians to design individual patient strategies for maternal health surveillance systems and predict adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Félix Nieto-Del-Amor
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València (Ci2B), Valencia 46022, Spain
| | - Yiyao Ye-Lin
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València (Ci2B), Valencia 46022, Spain; BJUT-UPV Joint Research Laboratory in Biomedical Engineering, China
| | | | | | | | - Jose L Martinez-de-Juan
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València (Ci2B), Valencia 46022, Spain; BJUT-UPV Joint Research Laboratory in Biomedical Engineering, China
| | - Dongmei Hao
- Faculty of Environment and Life, Beijing University of Technology, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing 100124, China; BJUT-UPV Joint Research Laboratory in Biomedical Engineering, China
| | - Gema Prats-Boluda
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València (Ci2B), Valencia 46022, Spain; BJUT-UPV Joint Research Laboratory in Biomedical Engineering, China.
| |
Collapse
|
3
|
Jager F. An open dataset with electrohysterogram records of pregnancies ending in induced and cesarean section delivery. Sci Data 2023; 10:669. [PMID: 37783671 PMCID: PMC10545725 DOI: 10.1038/s41597-023-02581-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023] Open
Abstract
The existing non-invasive automated preterm birth prediction methods rely on the use of uterine electrohysterogram (EHG) records coming from spontaneous preterm and term deliveries, and are indifferent to term induced and cesarean section deliveries. In order to enhance current publicly available pool of term EHG records, we developed a new EHG dataset, Induced Cesarean EHG DataSet (ICEHG DS), containing 126 30-minute EHG records, recorded early (23rd week), and/or later (31st week) during pregnancy, of those pregnancies that were expected to end in spontaneous term delivery, but ended in induced or cesarean section delivery. The records were collected at the University Medical Center Ljubljana, Ljubljana, Slovenia. The dataset includes 38 and 43, early and later, induced; 11 and 8, early and later, cesarean; and 13 and 13, early and later, induced and cesarean EHG records. This dataset enables better understanding of the underlying physiological mechanisms involved during pregnancies ending in induced and cesarean deliveries, and provides a robust and more realistic assessment of the performance of automated preterm birth prediction methods.
Collapse
Affiliation(s)
- Franc Jager
- Faculty of Computer and Information Science, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Mohammadi Far S, Beiramvand M, Shahbakhti M, Augustyniak P. Prediction of Preterm Labor from the Electrohysterogram Signals Based on Different Gestational Weeks. SENSORS (BASEL, SWITZERLAND) 2023; 23:5965. [PMID: 37447815 DOI: 10.3390/s23135965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023]
Abstract
Timely preterm labor prediction plays an important role for increasing the chance of neonate survival, the mother's mental health, and reducing financial burdens imposed on the family. The objective of this study is to propose a method for the reliable prediction of preterm labor from the electrohysterogram (EHG) signals based on different pregnancy weeks. In this paper, EHG signals recorded from 300 subjects were split into 2 groups: (I) those with preterm and term labor EHG data that were recorded prior to the 26th week of pregnancy (referred to as the PE-TE group), and (II) those with preterm and term labor EHG data that were recorded after the 26th week of pregnancy (referred to as the PL-TL group). After decomposing each EHG signal into four intrinsic mode functions (IMFs) by empirical mode decomposition (EMD), several linear and nonlinear features were extracted. Then, a self-adaptive synthetic over-sampling method was used to balance the feature vector for each group. Finally, a feature selection method was performed and the prominent ones were fed to different classifiers for discriminating between term and preterm labor. For both groups, the AdaBoost classifier achieved the best results with a mean accuracy, sensitivity, specificity, and area under the curve (AUC) of 95%, 92%, 97%, and 0.99 for the PE-TE group and a mean accuracy, sensitivity, specificity, and AUC of 93%, 90%, 94%, and 0.98 for the PL-TL group. The similarity between the obtained results indicates the feasibility of the proposed method for the prediction of preterm labor based on different pregnancy weeks.
Collapse
Affiliation(s)
| | - Matin Beiramvand
- Faculty of Information Technology and Communication, Tampere University, 33100 Tampere, Finland
| | - Mohammad Shahbakhti
- Biomedical Engineering Institute, Kaunas University of Technology, 51423 Kaunas, Lithuania
| | | |
Collapse
|
5
|
Romero-Morales H, Muñoz-Montes de Oca JN, Mora-Martínez R, Mina-Paz Y, Reyes-Lagos JJ. Enhancing classification of preterm-term birth using continuous wavelet transform and entropy-based methods of electrohysterogram signals. Front Endocrinol (Lausanne) 2023; 13:1035615. [PMID: 36704040 PMCID: PMC9873347 DOI: 10.3389/fendo.2022.1035615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/28/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Despite vast research, premature birth's electrophysiological mechanisms are not fully understood. Prediction of preterm birth contributes to child survival by providing timely and skilled care to both mother and child. Electrohysterography is an affordable, noninvasive technique that has been highly sensitive in diagnosing preterm labor. This study aimed to choose the more appropriate combination of characteristics, such as electrode channel and bandwidth, as well as those linear, time-frequency, and nonlinear features of the electrohysterogram (EHG) for predicting preterm birth using classifiers. Methods We analyzed two open-access datasets of 30 minutes of EHG obtained in regular checkups of women around 31 weeks of pregnancy who experienced premature labor (P) and term labor (T). The current approach filtered the raw EHGs in three relevant frequency subbands (0.3-1 Hz, 1-2 Hz, and 2-3Hz). The EHG time series were then segmented to create 120-second windows, from which individual characteristics were calculated. The linear, time-frequency, and nonlinear indices of EHG of each combination (channel-filter) were fed to different classifiers using feature selection techniques. Results The best performance, i.e., 88.52% accuracy, 83.83% sensitivity, and 93.22% specificity, was obtained in the 2-3 Hz bands using Medium Frequency, Continuous Wavelet Transform (CWT), and entropy-based indices. Interestingly, CWT features were significantly different in all filter-channel combinations. The proposed study uses small samples of EHG signals to diagnose preterm birth accurately, showing their potential application in the clinical environment. Discussion Our results suggest that CWT and novel entropy-based features of EHG could be suitable descriptors for analyzing and understanding the complex nature of preterm labor mechanisms.
Collapse
Affiliation(s)
- Héctor Romero-Morales
- Interdisciplinary Unit of Biotechnology (UPIBI), National Polytechnic Institute (IPN) of Mexico, Mexico City, Mexico
- National Institute of Astrophysics, Optics and Electronics (INAOE), Tonantzintla, Puebla, Mexico
| | - Jenny Noemí Muñoz-Montes de Oca
- Interdisciplinary Unit of Biotechnology (UPIBI), National Polytechnic Institute (IPN) of Mexico, Mexico City, Mexico
- National Institute of Astrophysics, Optics and Electronics (INAOE), Tonantzintla, Puebla, Mexico
| | - Rodrigo Mora-Martínez
- Interdisciplinary Unit of Biotechnology (UPIBI), National Polytechnic Institute (IPN) of Mexico, Mexico City, Mexico
| | - Yecid Mina-Paz
- Health and Movement Research Group, Faculty of Health, Universidad Santiago de Cali, Cali, Colombia
| | - José Javier Reyes-Lagos
- School of Medicine, Autonomous University of the State of Mexico (UAEMéx), Toluca de Lerdo, State of Mexico, Mexico
| |
Collapse
|
6
|
Pirnar Ž, Jager F, Geršak K. Characterization and separation of preterm and term spontaneous, induced, and cesarean EHG records. Comput Biol Med 2022; 151:106238. [PMID: 36343404 DOI: 10.1016/j.compbiomed.2022.106238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/30/2022] [Accepted: 10/22/2022] [Indexed: 12/27/2022]
Abstract
To improve the understanding of the underlying physiological processes that lead to preterm birth, and different term delivery modes, we quantitatively characterized and assessed the separability of the sets of early (23rd week) and later (31st week) recorded, preterm and term spontaneous, induced, cesarean, and induced-cesarean electrohysterogram (EHG) records using several of the most widely used non-linear features extracted from the EHG signals. Linearly modeled temporal trends of the means of the median frequencies (MFs), and of the means of the peak amplitudes (PAs) of the normalized power spectra of the EHG signals, along pregnancy (from early to later recorded records), derived from a variety of frequency bands, revealed that for the preterm group of records, in comparison to all other term delivery groups, the frequency spectrum of the frequency band B0L (0.08-0.3 Hz) shifts toward higher frequencies, and that the spectrum of the newly identified frequency band B0L' (0.125-0.575 Hz), which approximately matches the Fast Wave Low band, becomes stronger. The most promising features to separate between the later preterm group and all other later term delivery groups appear to be MF (p=1.1⋅10-5) in the band B0L of the horizontal signal S3, and PA (p=2.4⋅10-8) in the band B0L' (S3). Moreover, the PA in the band B0L' (S3) showed the highest power to individually separate between the later preterm group and any other later term delivery group. Furthermore, the results suggest that in preterm pregnancies the resting maternal heart rate decreases between the 23rd and 31st week of gestation.
Collapse
Affiliation(s)
- Žiga Pirnar
- Faculty of Computer and Information Science, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Franc Jager
- Faculty of Computer and Information Science, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia.
| | - Ksenija Geršak
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; University Medical Center Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Martins D, Batista A, Mouriño H, Russo S, Esgalhado F, dos Reis CRP, Serrano F, Ortigueira M. Adaptive Filtering for the Maternal Respiration Signal Attenuation in the Uterine Electromyogram. SENSORS (BASEL, SWITZERLAND) 2022; 22:7638. [PMID: 36236736 PMCID: PMC9571637 DOI: 10.3390/s22197638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
The electrohysterogram (EHG) is the uterine muscle electromyogram recorded at the abdominal surface of pregnant or non-pregnant woman. The maternal respiration electromyographic signal (MR-EMG) is one of the most relevant interferences present in an EHG. Alvarez (Alv) waves are components of the EHG that have been indicated as having the potential for preterm and term birth prediction. The MR-EMG component in the EHG represents an issue, regarding Alv wave application for pregnancy monitoring, for instance, in preterm birth prediction, a subject of great research interest. Therefore, the Alv waves denoising method should be designed to include the interference MR-EMG attenuation, without compromising the original waves. Adaptive filter properties make them suitable for this task. However, selecting the optimal adaptive filter and its parameters is an important task for the success of the filtering operation. In this work, an algorithm is presented for the automatic adaptive filter and parameter selection using synthetic data. The filter selection pool comprised sixteen candidates, from which, the Wiener, recursive least squares (RLS), householder recursive least squares (HRLS), and QR-decomposition recursive least squares (QRD-RLS) were the best performers. The optimized parameters were L = 2 (filter length) for all of them and λ = 1 (forgetting factor) for the last three. The developed optimization algorithm may be of interest to other applications. The optimized filters were applied to real data. The result was the attenuation of the MR-EMG in Alv waves power. For the Wiener filter, power reductions for quartile 1, median, and quartile 3 were found to be -16.74%, -20.32%, and -15.78%, respectively (p-value = 1.31 × 10-12).
Collapse
Affiliation(s)
- Daniela Martins
- NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Arnaldo Batista
- NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UNINOVA-CTS, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Helena Mouriño
- Faculty of Sciences, Lisbon University, Campo Grande, 1749-016 Lisbon, Portugal
- CEAUL Faculty of Sciences, Lisbon University, Campo Grande, 1749-016 Lisbon, Portugal
| | - Sara Russo
- NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Filipa Esgalhado
- NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Catarina R. Palma dos Reis
- Department of Obstetrics, University Central Hospital Lisbon (CHULC), 1169-050 Lisboa, Portugal
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Fátima Serrano
- Department of Obstetrics, University Central Hospital Lisbon (CHULC), 1169-050 Lisboa, Portugal
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Manuel Ortigueira
- NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UNINOVA-CTS, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
8
|
Nieto-del-Amor F, Prats-Boluda G, Garcia-Casado J, Diaz-Martinez A, Diago-Almela VJ, Monfort-Ortiz R, Hao D, Ye-Lin Y. Combination of Feature Selection and Resampling Methods to Predict Preterm Birth Based on Electrohysterographic Signals from Imbalance Data. SENSORS 2022; 22:s22145098. [PMID: 35890778 PMCID: PMC9319575 DOI: 10.3390/s22145098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023]
Abstract
Due to its high sensitivity, electrohysterography (EHG) has emerged as an alternative technique for predicting preterm labor. The main obstacle in designing preterm labor prediction models is the inherent preterm/term imbalance ratio, which can give rise to relatively low performance. Numerous studies obtained promising preterm labor prediction results using the synthetic minority oversampling technique. However, these studies generally overestimate mathematical models’ real generalization capacity by generating synthetic data before splitting the dataset, leaking information between the training and testing partitions and thus reducing the complexity of the classification task. In this work, we analyzed the effect of combining feature selection and resampling methods to overcome the class imbalance problem for predicting preterm labor by EHG. We assessed undersampling, oversampling, and hybrid methods applied to the training and validation dataset during feature selection by genetic algorithm, and analyzed the resampling effect on training data after obtaining the optimized feature subset. The best strategy consisted of undersampling the majority class of the validation dataset to 1:1 during feature selection, without subsequent resampling of the training data, achieving an AUC of 94.5 ± 4.6%, average precision of 84.5 ± 11.7%, maximum F1-score of 79.6 ± 13.8%, and recall of 89.8 ± 12.1%. Our results outperformed the techniques currently used in clinical practice, suggesting the EHG could be used to predict preterm labor in clinics.
Collapse
Affiliation(s)
- Félix Nieto-del-Amor
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022 Valencia, Spain; (F.N.-d.-A.); (J.G.-C.); (A.D.-M.); (Y.Y.-L.)
| | - Gema Prats-Boluda
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022 Valencia, Spain; (F.N.-d.-A.); (J.G.-C.); (A.D.-M.); (Y.Y.-L.)
- Correspondence:
| | - Javier Garcia-Casado
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022 Valencia, Spain; (F.N.-d.-A.); (J.G.-C.); (A.D.-M.); (Y.Y.-L.)
| | - Alba Diaz-Martinez
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022 Valencia, Spain; (F.N.-d.-A.); (J.G.-C.); (A.D.-M.); (Y.Y.-L.)
| | | | - Rogelio Monfort-Ortiz
- Servicio de Obstetricia, H.U.P. La Fe, 46026 Valencia, Spain; (V.J.D.-A.); (R.M.-O.)
| | - Dongmei Hao
- Faculty of Environment and Life, Beijing University of Technology, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing 100124, China;
| | - Yiyao Ye-Lin
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022 Valencia, Spain; (F.N.-d.-A.); (J.G.-C.); (A.D.-M.); (Y.Y.-L.)
| |
Collapse
|
9
|
Das S, Puthankattil SD. Functional Connectivity and Complexity in the Phenomenological Model of Mild Cognitive-Impaired Alzheimer's Disease. Front Comput Neurosci 2022; 16:877912. [PMID: 35733555 PMCID: PMC9207343 DOI: 10.3389/fncom.2022.877912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundFunctional connectivity and complexity analysis has been discretely studied to understand intricate brain dynamics. The current study investigates the interplay between functional connectivity and complexity using the Kuramoto mean-field model.MethodFunctional connectivity matrices are estimated using the weighted phase lag index and complexity measures through popularly used complexity estimators such as Lempel-Ziv complexity (LZC), Higuchi's fractal dimension (HFD), and fluctuation-based dispersion entropy (FDispEn). Complexity measures are estimated on real and simulated electroencephalogram (EEG) signals of patients with mild cognitive-impaired Alzheimer's disease (MCI-AD) and controls. Complexity measures are further applied to simulated signals generated from lesion-induced connectivity matrix and studied its impact. It is a novel attempt to study the relation between functional connectivity and complexity using a neurocomputational model.ResultsReal EEG signals from patients with MCI-AD exhibited reduced functional connectivity and complexity in anterior and central regions. A simulation study has also displayed significantly reduced regional complexity in the patient group with respect to control. A similar reduction in complexity was further evident in simulation studies with lesion-induced control groups compared with non-lesion-induced control groups.ConclusionTaken together, simulation studies demonstrate a positive influence of reduced connectivity in the model imparting a reduced complexity in the EEG signal. The study revealed the presence of a direct relation between functional connectivity and complexity with reduced connectivity, yielding a decreased EEG complexity.
Collapse
|
10
|
Prediction of Preterm Delivery from Unbalanced EHG Database. SENSORS 2022; 22:s22041507. [PMID: 35214412 PMCID: PMC8878555 DOI: 10.3390/s22041507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023]
Abstract
Objective: The early prediction of preterm labor can significantly minimize premature delivery complications for both the mother and infant. The aim of this research is to propose an automatic algorithm for the prediction of preterm labor using a single electrohysterogram (EHG) signal. Method: The proposed method firstly employs empirical mode decomposition (EMD) to split the EHG signal into two intrinsic mode functions (IMFs), then extracts sample entropy (SampEn), the root mean square (RMS), and the mean Teager–Kaiser energy (MTKE) from each IMF to form the feature vector. Finally, the extracted features are fed to a k-nearest neighbors (kNN), support vector machine (SVM), and decision tree (DT) classifiers to predict whether the recorded EHG signal refers to the preterm case. Main results: The studied database consists of 262 term and 38 preterm delivery pregnancies, each with three EHG channels, recorded for 30 min. The SVM with a polynomial kernel achieved the best result, with an average sensitivity of 99.5%, a specificity of 99.7%, and an accuracy of 99.7%. This was followed by DT, with a mean sensitivity of 100%, a specificity of 98.4%, and an accuracy of 98.7%. Significance: The main superiority of the proposed method over the state-of-the-art algorithms that studied the same database is the use of only a single EHG channel without using either synthetic data generation or feature ranking algorithms.
Collapse
|