1
|
Cen Y, Huang X, Liu J, Qin Y, Wu X, Ye S, Du S, Liao W. Application of three-dimensional reconstruction technology in dentistry: a narrative review. BMC Oral Health 2023; 23:630. [PMID: 37667286 PMCID: PMC10476426 DOI: 10.1186/s12903-023-03142-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/16/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Three-dimensional(3D) reconstruction technology is a method of transforming real goals into mathematical models consistent with computer logic expressions and has been widely used in dentistry, but the lack of review and summary leads to confusion and misinterpretation of information. The purpose of this review is to provide the first comprehensive link and scientific analysis of 3D reconstruction technology and dentistry to bridge the information bias between these two disciplines. METHODS The IEEE Xplore and PubMed databases were used for rigorous searches based on specific inclusion and exclusion criteria, supplemented by Google Academic as a complementary tool to retrieve all literature up to February 2023. We conducted a narrative review focusing on the empirical findings of the application of 3D reconstruction technology to dentistry. RESULTS We classify the technologies applied to dentistry according to their principles and summarize the different characteristics of each category, as well as the different application scenarios determined by these characteristics of each technique. In addition, we indicate their development prospects and worthy research directions in the field of dentistry, from individual techniques to the overall discipline of 3D reconstruction technology, respectively. CONCLUSIONS Researchers and clinicians should make different decisions on the choice of 3D reconstruction technology based on different objectives. The main trend in the future development of 3D reconstruction technology is the joint application of technology.
Collapse
Affiliation(s)
- Yueyan Cen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No.14, 3Rd Section of Ren Min Nan Rd. Chengdu, Sichuan, 610041, China
| | - Xinyue Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No.14, 3Rd Section of Ren Min Nan Rd. Chengdu, Sichuan, 610041, China
| | - Jialing Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No.14, 3Rd Section of Ren Min Nan Rd. Chengdu, Sichuan, 610041, China
| | - Yichun Qin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No.14, 3Rd Section of Ren Min Nan Rd. Chengdu, Sichuan, 610041, China
| | - Xinrui Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No.14, 3Rd Section of Ren Min Nan Rd. Chengdu, Sichuan, 610041, China
| | - Shiyang Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No.14, 3Rd Section of Ren Min Nan Rd. Chengdu, Sichuan, 610041, China
| | - Shufang Du
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No.14, 3Rd Section of Ren Min Nan Rd. Chengdu, Sichuan, 610041, China.
| | - Wen Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No.14, 3Rd Section of Ren Min Nan Rd. Chengdu, Sichuan, 610041, China.
| |
Collapse
|
2
|
Zeng S, Wu Y, Wang L, Huang Y, Huang W, Li Z, Gao W, Jiang S, Ge L, Zhang J. In vivo real-time assessment of developmental defects in enamel of anti-Act1 mice using optical coherence tomography. Heliyon 2023; 9:e16545. [PMID: 37274657 PMCID: PMC10238730 DOI: 10.1016/j.heliyon.2023.e16545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023] Open
Abstract
The purpose of this study was to explore the feasibility of using optical coherence tomography (OCT) for real-time and quantitative monitoring of enamel development in gene-edited enamel defect mice. NF-κB activator 1, known as Act1, is associated with many inflammatory diseases. The antisense oligonucleotide of Act1 was inserted after the CD68 gene promoter, which would cover the start region of the Act1 gene and inhibit its transcription. Anti-Act1 mice, gene-edited mice, were successfully constructed and demonstrated amelogenesis imperfecta by scanning electron microscope (SEM) and energy dispersive X-ray (EDX) spectroscopy. Wild-type (WT) mice were used as the control group in this study. WT mice and anti-Act1 mice at 3 weeks old were examined by OCT every week and killed at eight weeks old. Their mandibular bones were dissected and examined by OCT, micro-computed tomography (micro-CT), and SEM. OCT images showed that the outer layer of enamel of anti-Act1 mice was obviously thinner than that of WT mice but no difference in total thickness. When assessing enamel thickness, there was a significant normal linear correlation between these methods. OCT could scan the imperfect developed enamel noninvasively and quickly, providing images of the enamel layers of mouse incisors.
Collapse
Affiliation(s)
- Sujuan Zeng
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Yuejun Wu
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Lijing Wang
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yuhang Huang
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Wenyan Huang
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Ziling Li
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Weijian Gao
- School of Biomedical Engineering, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Siqing Jiang
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Lihong Ge
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
- Department of Pediatric Dentistry, Stomatology Hospital of Peking University, Beijing, 100081, China
| | - Jian Zhang
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
- School of Biomedical Engineering, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| |
Collapse
|