1
|
Napolitano F, De Rosa G, Chay-Canul A, Álvarez-Macías A, Pereira AMF, Bragaglio A, Mora-Medina P, Rodríguez-González D, García-Herrera R, Hernández-Ávalos I, Domínguez-Oliva A, Pacelli C, Sabia E, Casas-Alvarado A, Reyes-Sotelo B, Braghieri A. The Challenge of Global Warming in Water Buffalo Farming: Physiological and Behavioral Aspects and Strategies to Face Heat Stress. Animals (Basel) 2023; 13:3103. [PMID: 37835709 PMCID: PMC10571975 DOI: 10.3390/ani13193103] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Water buffaloes have morphological and behavioral characteristics for efficient thermoregulation. However, their health, welfare, and productive performance can be affected by GW. The objective of this review was to analyze the adverse effects of GW on the productive behavior and health of water buffaloes. The physiological, morphological, and behavioral characteristics of the species were discussed to understand the impact of climate change and extreme meteorological events on buffaloes' thermoregulation. In addition, management strategies in buffalo farms, as well as the use of infrared thermography as a method to recognize heat stress in water buffaloes, were addressed. We concluded that heat stress causes a change in energy mobilization to restore animal homeostasis. Preventing hyperthermia limits the physiological, endocrine, and behavioral changes so that they return to thermoneutrality. The use of fans, sprinklers, foggers, and natural sources of water are appropriate additions to current buffalo facilities, and infrared thermography could be used to monitor the thermal states of water buffaloes.
Collapse
Affiliation(s)
- Fabio Napolitano
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università Degli Studi della Basilicata, 85100 Potenza, Italy (C.P.)
| | - Giuseppe De Rosa
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Alfonso Chay-Canul
- División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Villahermosa 86025, Mexico
| | - Adolfo Álvarez-Macías
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico; (A.Á.-M.)
| | - Alfredo M. F. Pereira
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research, Universidade de Évora, 7006-554 Évora, Portugal;
| | - Andrea Bragaglio
- Consiglio per la Ricerca in Agricoltura e l’Analisi Dell’Economia Agraria (CREA), Research Centre for Engineering and Food Processing, Via Milano 43, 24047 Treviglio, Italy;
| | - Patricia Mora-Medina
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), FESC, Ciudad de México 04510, Mexico
| | - Daniela Rodríguez-González
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico; (A.Á.-M.)
| | - Ricardo García-Herrera
- División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Villahermosa 86025, Mexico
| | - Ismael Hernández-Ávalos
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), FESC, Ciudad de México 04510, Mexico
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico; (A.Á.-M.)
| | - Corrado Pacelli
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università Degli Studi della Basilicata, 85100 Potenza, Italy (C.P.)
| | - Emilio Sabia
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università Degli Studi della Basilicata, 85100 Potenza, Italy (C.P.)
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico; (A.Á.-M.)
| | - Brenda Reyes-Sotelo
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico; (A.Á.-M.)
| | - Ada Braghieri
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università Degli Studi della Basilicata, 85100 Potenza, Italy (C.P.)
| |
Collapse
|
2
|
Kutyrev A, Kiktev N, Jewiarz M, Khort D, Smirnov I, Zubina V, Hutsol T, Tomasik M, Biliuk M. Robotic Platform for Horticulture: Assessment Methodology and Increasing the Level of Autonomy. SENSORS (BASEL, SWITZERLAND) 2022; 22:8901. [PMID: 36433495 PMCID: PMC9693234 DOI: 10.3390/s22228901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
The relevance of the study is confirmed by the rapid development of automation in agriculture, in particular, horticulture; the lack of methodological developments to assess the effectiveness of the introduction of robotic technologies; and the need to expand the functionality of mobile robots. The purpose of the study was to increase the level of autonomy of a robotic platform for picking apple fruits based on a new method, develop a system of factors to determine the effectiveness of the introduction of robots in horticulture, and develop a control system using integrated processing of onboard data. The article discussed the efficiency factors for the introduction of robotic systems and technologies in agricultural enterprises specializing in horticulture within the framework of projects with different budgets. The study sample consisted of 30 experts-enterprises that have implemented robotic platforms and scientists specializing in this field. Based on an expert survey of enterprise specialists, a ranked list of 18 efficiency factors was obtained. To select an evaluation factor that determines the effectiveness of robotization and the developed control system, a method for calculating the concordance coefficient (method of expert analysis) was applied as a measure of the consistency of a group of experts for each group of factors. An analysis of the results of the expert evaluation showed that three factors are the most significant: the degree of autonomy of work; positioning accuracy; and recognition accuracy. The generalized indicator of local autonomy of task performance was estimated based on the analysis of a set of single indicators. A system for controlling the movement of an autonomous robotic wheeled platform based on inertial and satellite navigation and calculation of the path to be overcome was developed. The developed software allows for the design of a route for the robotic platform in apple horticulture to automatically perform various technological operations, such as fertilization, growth and disease control, and fruit harvesting. With the help of the software module, the X, Y coordinates, speed and azimuth of movement were given, and the movement of the platform along the given typical turn trajectories in an intensive horticulture environment was visualized.
Collapse
Affiliation(s)
- Alexey Kutyrev
- Federal State Budgetary Scientific Institution “Federal Scientific Agroengineering Center VIM”, International Center of Informatics and Computer Science (ICICS), Hong Kong 109428, China
| | - Nikolay Kiktev
- Department of Intelligent Technologies, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
- Department of Automation and Robotic Systems, National University of Life and Environmental Sciences of Ukraine, 03041 Kyiv, Ukraine
| | - Marcin Jewiarz
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, 30-149 Krakow, Poland
| | - Dmitriy Khort
- Federal State Budgetary Scientific Institution “Federal Scientific Agroengineering Center VIM”, International Center of Informatics and Computer Science (ICICS), Hong Kong 109428, China
| | - Igor Smirnov
- Federal State Budgetary Scientific Institution “Federal Scientific Agroengineering Center VIM”, International Center of Informatics and Computer Science (ICICS), Hong Kong 109428, China
| | - Valeria Zubina
- Federal State Budgetary Scientific Institution “Federal Scientific Agroengineering Center VIM”, International Center of Informatics and Computer Science (ICICS), Hong Kong 109428, China
| | - Taras Hutsol
- Department of Mechanics and Agroecosystems Engineering, Polissia National University, 10008 Zhytomyr, Ukraine
| | - Marcin Tomasik
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, 30-149 Krakow, Poland
| | - Mykola Biliuk
- Innovative Program of Strategic Development of the University, European Social Fund, University of Agriculture in Krakow, 30-149 Krakow, Poland
| |
Collapse
|
3
|
Automated Mobile Hot Mist Generator: A Quest for Effectiveness in Fruit Horticulture. SENSORS 2022; 22:s22093164. [PMID: 35590857 PMCID: PMC9104895 DOI: 10.3390/s22093164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023]
Abstract
The study relates to the use of automated plant protection systems in agriculture. The article presents a proprietary automated mobile platform with an aerosol generator of hot mist. Furthermore, the cause of the loss of a chemical preparation in the spraying of plant protection products on the tree crown was determined in the course of field research. A statistical analysis of the results of experiment was carried out and the effect of droplet size on leaf coating density was determined. The manuscript presents a diagram of the degree of penetration of the working solution as it drops into the crown of the tree, as well as a cross-sectional graph of the permeability of the spray from the projection of the fruit tree crown. The most effective modes of operation of the automated mobile platform for spraying plant protection products with a mist generator aggregate were established. Analysis of the results shows that the device meets the spraying requirements of the procedure for spraying plant protection products. The novelty of this research lies in the optimal modes identified by movement of the developed automated mobile platform and the parameters of plant treatment with protective equipment when using a hot mist generator. The following mode parameters were established: the speed of the automated platform was 3.4 km/h, the distance to the crown of the tree was 1.34 m, and the flow rate of the working fluid was 44.1 L/h. Average fuel consumption was 2.5 L/h. Effective aerosol penetration reduced the amount of working fluid used by up to 50 times.
Collapse
|
4
|
Modeling of Diesel Engine Fuel Systems Reliability When Operating on Biofuels. ENERGIES 2022. [DOI: 10.3390/en15051795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
One of the main trends in the development of modern engine building is the use of biodiesel fuel, which can lead to a decrease in the reliability of engines that are not adapted to it. However, at present there is no general method for determining the reliability of fuel systems of internal combustion engines. In this paper, a reliability model of engine fuel systems when operating on biofuel has been developed. Comprehensive indicators for assessing the reliability of diesel engine fuel systems are the coefficient of readiness and technical use. The availability factor of the fuel system when operating on biodiesel fuel without the replacement of structural materials was 0.66, while with the replacement it was 0.71, and the coefficient of technical utilization without replacement of materials was 0.36, and with the replacement of 0.4. Recommendations are given to improve the reliability of the engine fuel system components. The resulting model allows for complex comparisons of the effectiveness of various ways to improve the reliability of engines running on biodiesel fuel.
Collapse
|