Ren H, Liu T, Wang J. Design and Analysis of an Upper Limb Rehabilitation Robot Based on Multimodal Control.
SENSORS (BASEL, SWITZERLAND) 2023;
23:8801. [PMID:
37960505 PMCID:
PMC10647264 DOI:
10.3390/s23218801]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023]
Abstract
To address the rehabilitation needs of upper limb hemiplegic patients in various stages of recovery, streamline the workload of rehabilitation professionals, and provide data visualization, our research team designed a six-degree-of-freedom upper limb exoskeleton rehabilitation robot inspired by the human upper limb's structure. We also developed an eight-channel synchronized signal acquisition system for capturing surface electromyography (sEMG) signals and elbow joint angle data. Utilizing Solidworks, we modeled the robot with a focus on modularity, and conducted structural and kinematic analyses. To predict the elbow joint angles, we employed a back propagation neural network (BPNN). We introduced three training modes: a PID control, bilateral control, and active control, each tailored to different phases of the rehabilitation process. Our experimental results demonstrated a strong linear regression relationship between the predicted reference values and the actual elbow joint angles, with an R-squared value of 94.41% and an average error of four degrees. Furthermore, these results validated the increased stability of our model and addressed issues related to the size and single-mode limitations of upper limb rehabilitation robots. This work lays the theoretical foundation for future model enhancements and further research in the field of rehabilitation.
Collapse