1
|
Alathari MJA, Mashhadany YA, Bakar AAA, Mokhtar MHH, Bin Zan MSD, Arsad N. COVID-19 IgG antibodies detection based on CNN-BiLSTM algorithm combined with fiber-optic dataset. J Virol Methods 2024; 330:115011. [PMID: 39154936 DOI: 10.1016/j.jviromet.2024.115011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/14/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
The urgent need for efficient and accurate automated screening tools for COVID-19 detection has led to research efforts exploring various approaches. In this study, we present pioneering research on COVID-19 detection using a hybrid model that combines convolutional neural networks (CNN) with a bi-directional long short-term memory (Bi-LSTM) network, in conjunction with fiber optic data for SARS-CoV-2 Immunoglobulin G (IgG) antibodies. Our research introduces a comprehensive data preprocessing pipeline and evaluates the performance of four different deep learning (DL) algorithms: CNN, CNN-RNN, BiLSTM, and CNN-BiLSTM, in classifying samples as positive or negative for the COVID-19 virus. Among these, the CNN-BiLSTM classifier demonstrated superior performance on the training datasets, achieving an accuracy of 89 %, a recall of 88 %, a precision of 90 %, an F1-score of 89 %, a specificity of 90 %, a geometric mean (G-mean) of 89 %, and a receiver operating characteristic (ROC) of 96 %. In addition, the achieved classification results were compared with those reported in the literature. The findings indicate that the proposed model has promising potential for classifying COVID-19 and could serve as a valuable tool for healthcare professionals. The use of IgG antibodies to detect the virus enhances the specificity and accuracy of the diagnostic tool.
Collapse
Affiliation(s)
- Mohammed Jawad Ahmed Alathari
- UKM - Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia.
| | - Yousif Al Mashhadany
- Department of Electrical Engineering, College of Engineering, Anbar University, Anbar 00964, Iraq.
| | - Ahmad Ashrif A Bakar
- UKM - Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia.
| | - Mohd Hadri Hafiz Mokhtar
- UKM - Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia.
| | - Mohd Saiful Dzulkefly Bin Zan
- UKM - Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia.
| | - Norhana Arsad
- UKM - Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia.
| |
Collapse
|
2
|
Wisse JJ, Somhorst P, Behr J, van Nieuw Amerongen AR, Gommers D, Jonkman AH. Improved filtering methods to suppress cardiovascular contamination in electrical impedance tomography recordings. Physiol Meas 2024; 45:055010. [PMID: 38697210 DOI: 10.1088/1361-6579/ad46e3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/01/2024] [Indexed: 05/04/2024]
Abstract
Objective.Electrical impedance tomography (EIT) produces clinical useful visualization of the distribution of ventilation inside the lungs. The accuracy of EIT-derived parameters can be compromised by the cardiovascular signal. Removal of these artefacts is challenging due to spectral overlapping of the ventilatory and cardiovascular signal components and their time-varying frequencies. We designed and evaluated advanced filtering techniques and hypothesized that these would outperform traditional low-pass filters.Approach.Three filter techniques were developed and compared against traditional low-pass filtering: multiple digital notch filtering (MDN), empirical mode decomposition (EMD) and the maximal overlap discrete wavelet transform (MODWT). The performance of the filtering techniques was evaluated (1) in the time domain (2) in the frequency domain (3) by visual inspection. We evaluated the performance using simulated contaminated EIT data and data from 15 adult and neonatal intensive care unit patients.Main result.Each filter technique exhibited varying degrees of effectiveness and limitations. Quality measures in the time domain showed the best performance for MDN filtering. The signal to noise ratio was best for DLP, but at the cost of a high relative and removal error. MDN outbalanced the performance resulting in a good SNR with a low relative and removal error. MDN, EMD and MODWT performed similar in the frequency domain and were successful in removing the high frequency components of the data.Significance.Advanced filtering techniques have benefits compared to traditional filters but are not always better. MDN filtering outperformed EMD and MODWT regarding quality measures in the time domain. This study emphasizes the need for careful consideration when choosing a filtering approach, depending on the dataset and the clinical/research question.
Collapse
Affiliation(s)
- Jantine J Wisse
- Department of Adult Intensive Care, Erasmus Medical Centre, Rotterdam, The Netherlands
- Department of Neonatal and Pediatric Intensive Care, Erasmus Medical Centre-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Peter Somhorst
- Department of Adult Intensive Care, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Joris Behr
- Department of Adult Intensive Care, Erasmus Medical Centre, Rotterdam, The Netherlands
- Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - Arthur R van Nieuw Amerongen
- Department of Adult Intensive Care, Erasmus Medical Centre, Rotterdam, The Netherlands
- Department of Neurology, LUMC, Leiden, The Netherlands
| | - Diederik Gommers
- Department of Adult Intensive Care, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Annemijn H Jonkman
- Department of Adult Intensive Care, Erasmus Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Klaar ACR, Seman LO, Mariani VC, Coelho LDS. Random Convolutional Kernel Transform with Empirical Mode Decomposition for Classification of Insulators from Power Grid. SENSORS (BASEL, SWITZERLAND) 2024; 24:1113. [PMID: 38400271 PMCID: PMC10893376 DOI: 10.3390/s24041113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024]
Abstract
The electrical energy supply relies on the satisfactory operation of insulators. The ultrasound recorded from insulators in different conditions has a time series output, which can be used to classify faulty insulators. The random convolutional kernel transform (Rocket) algorithms use convolutional filters to extract various features from the time series data. This paper proposes a combination of Rocket algorithms, machine learning classifiers, and empirical mode decomposition (EMD) methods, such as complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), empirical wavelet transform (EWT), and variational mode decomposition (VMD). The results show that the EMD methods, combined with MiniRocket, significantly improve the accuracy of logistic regression in insulator fault diagnosis. The proposed strategy achieves an accuracy of 0.992 using CEEMDAN, 0.995 with EWT, and 0.980 with VMD. These results highlight the potential of incorporating EMD methods in insulator failure detection models to enhance the safety and dependability of power systems.
Collapse
Affiliation(s)
| | - Laio Oriel Seman
- Department of Automation and Systems Engineering, Federal University of Santa Catarina, Florianópolis 88040-535, Brazil;
| | - Viviana Cocco Mariani
- Mechanical Engineering Graduate Program, Pontifical Catholic University of Parana, Curitiba 80215-901, Brazil;
- Department of Electrical Engineering, Federal University of Parana, Curitiba 81530-000, Brazil;
| | - Leandro dos Santos Coelho
- Department of Electrical Engineering, Federal University of Parana, Curitiba 81530-000, Brazil;
- Industrial and Systems Engineering Graduate Program, Pontifical Catholic University of Parana, Curitiba 80215-901, Brazil
| |
Collapse
|
4
|
Doborjeh M, Liu X, Doborjeh Z, Shen Y, Searchfield G, Sanders P, Wang GY, Sumich A, Yan WQ. Prediction of Tinnitus Treatment Outcomes Based on EEG Sensors and TFI Score Using Deep Learning. SENSORS (BASEL, SWITZERLAND) 2023; 23:902. [PMID: 36679693 PMCID: PMC9861477 DOI: 10.3390/s23020902] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Tinnitus is a hearing disorder that is characterized by the perception of sounds in the absence of an external source. Currently, there is no pharmaceutical cure for tinnitus, however, multiple therapies and interventions have been developed that improve or control associated distress and anxiety. We propose a new Artificial Intelligence (AI) algorithm as a digital prognostic health system that models electroencephalographic (EEG) data in order to predict patients' responses to tinnitus therapies. The EEG data was collected from patients prior to treatment and 3-months following a sound-based therapy. Feature selection techniques were utilised to identify predictive EEG variables with the best accuracy. The patients' EEG features from both the frequency and functional connectivity domains were entered as inputs that carry knowledge extracted from EEG into AI algorithms for training and predicting therapy outcomes. The AI models differentiated the patients' outcomes into either therapy responder or non-responder, as defined by their Tinnitus Functional Index (TFI) scores, with accuracies ranging from 98%-100%. Our findings demonstrate the potential use of AI, including deep learning, for predicting therapy outcomes in tinnitus. The research suggests an optimal configuration of the EEG sensors that are involved in measuring brain functional changes in response to tinnitus treatments. It identified which EEG electrodes are the most informative sensors and how the EEG frequency and functional connectivity can better classify patients into the responder and non-responder groups. This has potential for real-time monitoring of patient therapy outcomes at home.
Collapse
Affiliation(s)
- Maryam Doborjeh
- Knowledge Engineering and Discovery Research Institute (KEDRI), School of Engineering Computer and Mathematical Sciences, Auckland University of Technology, Auckland 1010, New Zealand
| | - Xiaoxu Liu
- Knowledge Engineering and Discovery Research Institute (KEDRI), School of Engineering Computer and Mathematical Sciences, Auckland University of Technology, Auckland 1010, New Zealand
- Centre for Robotics & Vision (CeRV), Auckland University of Technology, Auckland 1010, New Zealand
| | - Zohreh Doborjeh
- Eisdell Moore Centre, Audiology, School of Population Health, The University of Auckland, Auckland 1010, New Zealand
- School of Psychology, The University of Waikato, Hamilton 3216, New Zealand
| | - Yuanyuan Shen
- Knowledge Engineering and Discovery Research Institute (KEDRI), School of Engineering Computer and Mathematical Sciences, Auckland University of Technology, Auckland 1010, New Zealand
| | - Grant Searchfield
- Eisdell Moore Centre, Audiology, School of Population Health, The University of Auckland, Auckland 1010, New Zealand
| | - Philip Sanders
- Eisdell Moore Centre, Audiology, School of Population Health, The University of Auckland, Auckland 1010, New Zealand
| | - Grace Y. Wang
- School of Psychology and Wellbeing, University of Southern Queensland, Darling Heights, QLD 4350, Australia
- Centre for Health Research, University of Southern Queensland, Darling Heights, QLD 4350, Australia
| | - Alexander Sumich
- NTU Psychology, Nottingham Trent University, Nottingham NG1 4FQ, UK
| | - Wei Qi Yan
- Centre for Robotics & Vision (CeRV), Auckland University of Technology, Auckland 1010, New Zealand
| |
Collapse
|
5
|
Nomogram-Based Chronic Kidney Disease Prediction Model for Type 1 Diabetes Mellitus Patients Using Routine Pathological Data. J Pers Med 2022; 12:jpm12091507. [PMID: 36143293 PMCID: PMC9501949 DOI: 10.3390/jpm12091507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) patients are a significant threat to chronic kidney disease (CKD) development during their life. However, there is always a high chance of delay in CKD detection because CKD can be asymptomatic, and T1DM patients bypass traditional CKD tests during their routine checkups. This study aims to develop and validate a prediction model and nomogram of CKD in T1DM patients using readily available routine checkup data for early CKD detection. This research utilized 1375 T1DM patients’ sixteen years of longitudinal data from multi-center Epidemiology of Diabetes Interventions and Complications (EDIC) clinical trials conducted at 28 sites in the USA and Canada and considered 17 routinely available features. Three feature ranking algorithms, extreme gradient boosting (XGB), random forest (RF), and extremely randomized trees classifier (ERT), were applied to create three feature ranking lists, and logistic regression analyses were performed to develop CKD prediction models using these ranked feature lists to identify the best performing top-ranked features combination. Finally, the most significant features were selected to develop a multivariate logistic regression-based CKD prediction model for T1DM patients. This model was evaluated using sensitivity, specificity, accuracy, precision, and F1 score on train and test data. A nomogram of the final model was further generated for easy application in clinical practices. Hypertension, duration of diabetes, drinking habit, triglycerides, ACE inhibitors, low-density lipoprotein (LDL) cholesterol, age, and smoking habit were the top-8 features ranked by the XGB model and identified as the most important features for predicting CKD in T1DM patients. These eight features were selected to develop the final prediction model using multivariate logistic regression, which showed 90.04% and 88.59% accuracy in internal and test data validation. The proposed model showed excellent performance and can be used for CKD identification in T1DM patients during routine checkups.
Collapse
|
6
|
Shoeibi A, Moridian P, Khodatars M, Ghassemi N, Jafari M, Alizadehsani R, Kong Y, Gorriz JM, Ramírez J, Khosravi A, Nahavandi S, Acharya UR. An overview of deep learning techniques for epileptic seizures detection and prediction based on neuroimaging modalities: Methods, challenges, and future works. Comput Biol Med 2022; 149:106053. [DOI: 10.1016/j.compbiomed.2022.106053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 02/01/2023]
|
7
|
Song K, Fang J, Zhang L, Chen F, Wan J, Xiong N. An Intelligent Epileptic Prediction System Based on Synchrosqueezed Wavelet Transform and Multi-Level Feature CNN for Smart Healthcare IoT. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22176458. [PMID: 36080916 PMCID: PMC9460721 DOI: 10.3390/s22176458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 05/03/2023]
Abstract
Epilepsy is a common neurological disease worldwide, characterized by recurrent seizures. There is currently no cure for epilepsy. However, seizures can be controlled by drugs and surgeries in about 70% of epileptic patients. A timely and accurate prediction of seizures can prevent injuries during seizures and improve the patients' quality of life. In this paper, we proposed an intelligent epileptic prediction system based on Synchrosqueezed Wavelet Transform (SWT) and Multi-Level Feature Convolutional Neural Network (MLF-CNN) for smart healthcare IoT network. In this system, we used SWT to map EEG signals to the frequency domain, which was able to measure the energy changes in EEG signals caused by seizures within a well-defined Time-Frequency (TF) plane. MLF-CNN was then applied to extract multi-level features from the processed EEG signals and classify the different seizure segments. The performance of our proposed system was evaluated with the publicly available CHB-MIT dataset and our private ZJU4H dataset. The system achieved an accuracy of 96.99% and 94.25%, a sensitivity of 96.48% and 97.76%, a specificity of 97.46% and 94.07% and a false prediction rate (FPR/h) of 0.031 and 0.049 FPR/h on the CHB-MIT dataset and the ZJU4H dataset, respectively.
Collapse
Affiliation(s)
- Kunpeng Song
- School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Jiajia Fang
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Lei Zhang
- School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Fangni Chen
- School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
- Correspondence:
| | - Jian Wan
- School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Neal Xiong
- Department of Computer Science and Mathematics, Sul Ross State University, Alpine, TX 79830, USA
| |
Collapse
|
8
|
Zhang L, Zhao L, Wang C, Xiao Q, Liu H, Zhang H, Hu Y. Multiple Enhanced Sparse Representation via IACMDSR Model for Bearing Compound Fault Diagnosis. SENSORS (BASEL, SWITZERLAND) 2022; 22:6330. [PMID: 36080790 PMCID: PMC9460066 DOI: 10.3390/s22176330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
For the sake of addressing the issue of extracting multiple features embedded in a noise-heavy vibration signal for bearing compound fault diagnosis, a novel model based on improved adaptive chirp mode decomposition (IACMD) and sparse representation, namely IACMDSR, is developed in this paper. Firstly, the IACMD is employed to simultaneously separate the distinct fault types and extract multiple resonance frequencies induced by them. Next, an adaptive bilateral wavelet hyper-dictionary that digs deeper into the periodicity and waveform characteristics exhibited by the real fault impulse response is constructed to identify and reconstruct each type of fault-induced feature with the help of the orthogonal matching pursuit (OMP) algorithm. Finally, the fault characteristic frequency can be detected via an envelope demodulation analysis of the reconstructed signal. A simulation and two sets of experimental results confirm that the developed IACMDSR model is a powerful and versatile tool and consistently outperforms the leading MCKDSR and MCKDMWF models. Furthermore, the developed model has satisfactory capability in practical applications because the IACMD has no requirement for the input number of the signal components and the adaptive bilateral wavelet is powerfully matched to the real fault-induced impulse response.
Collapse
|
9
|
Babiloni C, Noce G, Di Bonaventura C, Lizio R, Eldellaa A, Tucci F, Salamone EM, Ferri R, Soricelli A, Nobili F, Famà F, Arnaldi D, Palma E, Cifelli P, Marizzoni M, Stocchi F, Bruno G, Di Gennaro G, Frisoni GB, Del Percio C. Alzheimer's Disease with Epileptiform EEG Activity: Abnormal Cortical Sources of Resting State Delta Rhythms in Patients with Amnesic Mild Cognitive Impairment. J Alzheimers Dis 2022; 88:903-931. [PMID: 35694930 DOI: 10.3233/jad-220442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Patients with amnesic mild cognitive impairment due to Alzheimer's disease (ADMCI) typically show a "slowing" of cortical resting-state eyes-closed electroencephalographic (rsEEG) rhythms. Some of them also show subclinical, non-convulsive, and epileptiform EEG activity (EEA) with an unclear relationship with that "slowing." OBJECTIVE Here we tested the hypothesis that the "slowing" of rsEEG rhythms is related to EEA in ADMCI patients. METHODS Clinical and instrumental datasets in 62 ADMCI patients and 38 normal elderly (Nold) subjects were available in a national archive. No participant had received a clinical diagnosis of epilepsy. The eLORETA freeware estimated rsEEG cortical sources. The area under the receiver operating characteristic curve (AUROCC) indexed the accuracy of eLORETA solutions in the classification between ADMCI-EEA and ADMCI-noEEA individuals. RESULTS EEA was observed in 15% (N = 8) of the ADMCI patients. The ADMCI-EEA group showed: 1) more abnormal Aβ 42 levels in the cerebrospinal fluid as compared to the ADMCI-noEEA group and 2) higher temporal and occipital delta (<4 Hz) rsEEG source activities as compared to the ADMCI-noEEA and Nold groups. Those source activities showed moderate accuracy (AUROCC = 0.70-0.75) in the discrimination between ADMCI-noEEA versus ADMCI-EEA individuals. CONCLUSION It can be speculated that in ADMCI-EEA patients, AD-related amyloid neuropathology may be related to an over-excitation in neurophysiological low-frequency (delta) oscillatory mechanisms underpinning cortical arousal and quiet vigilance.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy.,Hospital San Raffaele Cassino, Cassino (FR), Italy
| | | | - Carlo Di Bonaventura
- Epilepsy Unit, Department of Neurosciences/Mental Health, Sapienza University of Rome, Rome, Italy
| | | | - Ali Eldellaa
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Federico Tucci
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Enrico M Salamone
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy.,Epilepsy Unit, Department of Neurosciences/Mental Health, Sapienza University of Rome, Rome, Italy
| | | | - Andrea Soricelli
- IRCCS Synlab SDN, Naples, Italy.,Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | - Flavio Nobili
- Clinical Neurology, IRCCS Hospital Policlinico San Martino, Genoa, Italy.,Department of Neuroscience (DiNOGMI), University of Genoa, Genoa, Italy
| | - Francesco Famà
- Clinical Neurology, IRCCS Hospital Policlinico San Martino, Genoa, Italy
| | - Dario Arnaldi
- Clinical Neurology, IRCCS Hospital Policlinico San Martino, Genoa, Italy
| | - Eleonora Palma
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy.,Pasteur Institute-Cenci Bolognetti Foundation, Rome, Italy
| | - Pierangelo Cifelli
- IRCCS Neuromed, Pozzilli, (IS), Italy.,Department of Applied and Biotechnological Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Moira Marizzoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | | - Giuseppe Bruno
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | | - Giovanni B Frisoni
- Department of Applied and Biotechnological Clinical Sciences, University of L'Aquila, L'Aquila, Italy.,Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Claudio Del Percio
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|