Volkovich Z, Ravve EV, Avros R. Indoor Navigation in Facilities with Repetitive Structures.
SENSORS (BASEL, SWITZERLAND) 2024;
24:2876. [PMID:
38732986 PMCID:
PMC11086065 DOI:
10.3390/s24092876]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 05/13/2024]
Abstract
Most facilities are structured in a repetitive manner. In this paper, we propose an algorithm and its partial implementation for a cellular guide in such facilities without GPS use. The complete system is based on iBeacons-like components, which operate on BLE technology, and their integration into a navigation application. We assume that the user's location is determined with sufficient accuracy. Our main goal revolves around leveraging the repetitive structure of the given facility to optimize navigation in terms of storage requirements, energy efficiency in the cellular device, algorithmic complexity, and other aspects. To the best of our knowledge, there is no prior experience in addressing this specific aim. In order to provide high performance in real time, we rely on optimal saving and the use of pre-calculated and stored navigation sub-routes. Our implementation seamlessly integrates iBeacon communications, a pre-defined indoor map, diverse data structures for efficient information storage, and a user interface, all working cohesively under a single supervision. Each module can be considered, developed, and improved independently. The approach is mainly directed to places, such as passenger ships, hotels, colleges, and so on. Because of the fact that there are "replicated" parts on different floors, stored once and used for multiple routes, we reduce the amount of information that must be stored, thus helping to reduce memory usage and as a result, yielding a better running time and energy consumption.
Collapse