1
|
Gierej A, Baghdasaryan T, Martyn M, Woulfe P, Mc Laughlin O, Prise K, Workman G, O'Keeffe S, Rochlitz K, Verlinski S, Giaz A, Santoro R, Caccia M, Berghmans F, Van Erps J. Mass-manufacturable scintillation-based optical fiber dosimeters for brachytherapy. Biosens Bioelectron 2024; 255:116237. [PMID: 38537429 DOI: 10.1016/j.bios.2024.116237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 04/15/2024]
Abstract
Scintillation-based fiber dosimeters are a powerful tool for minimally invasive localized real-time monitoring of the dose rate during Low Dose Rate (LDR) and High Dose Rate (HDR) brachytherapy (BT). This paper presents the design, fabrication, and characterization of such dosimeters, consisting of scintillating sensor tips attached to polymer optical fiber (POF). The sensor tips consist of inorganic scintillators, i.e. Gd2O2S:Tb for LDR-BT, and Y2O3:Eu+4YVO4:Eu for HDR-BT, dispersed in a polymer host. The shape and size of the tips are optimized using non-sequential ray tracing simulations towards maximizing the collection and coupling of the scintillation signal into the POF. They are then manufactured by means of a custom moulding process implemented on a commercial hot embossing machine, paving the way towards series production. Dosimetry experiments in water phantoms show that both the HDR-BT and LDR-BT sensors feature good consistency in the magnitude of the average photon count rate and that the photon count rate signal is not significantly affected by variations in sensor tip composition and geometry. Whilst individual calibration remains necessary, the proposed dosimeters show great potential for in-vivo dosimetry for brachytherapy.
Collapse
Affiliation(s)
- Agnieszka Gierej
- Brussels Photonics (B-PHOT), Vrije Universiteit Brussel and Flanders Make, Dept. of Applied Physics and Photonics, Brussels, Belgium
| | - Tigran Baghdasaryan
- Brussels Photonics (B-PHOT), Vrije Universiteit Brussel and Flanders Make, Dept. of Applied Physics and Photonics, Brussels, Belgium
| | - Michael Martyn
- Department of Medical Physics, Blackrock Health - Galway Clinic, Doughiska, Co. Galway, Ireland; Physics Unit, School of Natural Sciences, University of Galway, Galway, Ireland
| | - Peter Woulfe
- Department of Medical Physics, Blackrock Health - Galway Clinic, Doughiska, Co. Galway, Ireland
| | - Owen Mc Laughlin
- The Centre for Cancer Research & Cell Biology (CCRCB) at Queen's University, Belfast, UK
| | - Kevin Prise
- The Centre for Cancer Research & Cell Biology (CCRCB) at Queen's University, Belfast, UK
| | - Geraldine Workman
- The Centre for Cancer Research & Cell Biology (CCRCB) at Queen's University, Belfast, UK
| | - Sinead O'Keeffe
- Optical Fibre Sensors Research Centre, University of Limerick, Ireland
| | - Kurt Rochlitz
- Brussels Photonics (B-PHOT), Vrije Universiteit Brussel and Flanders Make, Dept. of Applied Physics and Photonics, Brussels, Belgium
| | - Sergey Verlinski
- Brussels Photonics (B-PHOT), Vrije Universiteit Brussel and Flanders Make, Dept. of Applied Physics and Photonics, Brussels, Belgium
| | - Agnese Giaz
- Università Degli Studi Dell'Insubria, Dipartimento di Scienza e Alta Tecnologia, Via Valleggio 11, Como, Italy
| | - Romualdo Santoro
- Università Degli Studi Dell'Insubria, Dipartimento di Scienza e Alta Tecnologia, Via Valleggio 11, Como, Italy
| | - Massimo Caccia
- Università Degli Studi Dell'Insubria, Dipartimento di Scienza e Alta Tecnologia, Via Valleggio 11, Como, Italy
| | - Francis Berghmans
- Brussels Photonics (B-PHOT), Vrije Universiteit Brussel and Flanders Make, Dept. of Applied Physics and Photonics, Brussels, Belgium
| | - Jürgen Van Erps
- Brussels Photonics (B-PHOT), Vrije Universiteit Brussel and Flanders Make, Dept. of Applied Physics and Photonics, Brussels, Belgium.
| |
Collapse
|
2
|
Pfeifer KB, Weber TM, Martin JE. Development of local-power-free, remote α-particle detection using optical fibers. JOURNAL OF RADIATION RESEARCH 2024; 65:136-143. [PMID: 38037422 PMCID: PMC10803159 DOI: 10.1093/jrr/rrad092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/17/2023] [Indexed: 12/02/2023]
Abstract
We demonstrate the application of fluorescence optical fiber coupled to a telecom grade fiber as a sensor for alpha particles using alpha-specific ZnS(Ag) scintillation materials whose wavelength is down-shifted into a low-loss region of the telecom grade fiber transmission band. Telecom-grade fiber optics offer a solution for sensing alpha radiation in deep repositories and cask storage for radioactive materials due to the stability of SiO2 under normal environmental conditions and its relative radiation hardness at low radiation doses. Long-term nuclear waste storage facilities require sensors for the detection of leakage of radioactive materials that are maintenance-free, do not require power and can survive with no 'wear out' mechanisms for decades. By accomplishing the wavelength transformation, we maximize efficiencies in the detection of α-particles and signal transport and can detect alpha scintillation at distances on the order of >1 km with a sensor that is ~3% efficient and can be easily scaled as a sensor array. This paper describes the construction and testing of the sensor including manufacture of the controlled thickness films, verification of the wavelength shift from 450 to 620 nm and optimization of the sensitivity as a function of thickness. We also model the relative sensitivity of the film as a function of film thickness, and we demonstrate a signal-to-noise ratio of 10 at a range of greater than 1 km.
Collapse
Affiliation(s)
- Kent B Pfeifer
- Biological and Chemical Sensors, Sandia National Laboratories, M/S 1425, 1515 Eubank SE, P.O. Box 5800, Albuquerque, NM 87185-1425, USA
| | - Thomas M Weber
- Nuclear Verification, Sandia National Laboratories, M/S 1373, 1515 Eubank SE, P.O. Box 5800, Albuquerque, NM 87185-1373, USA
| | - James E Martin
- Critical Asset Security, Sandia National Laboratories, M/S 1415, 1515 Eubank SE, P.O. Box 5800, Albuquerque, NM 87185-1415, USA
| |
Collapse
|
3
|
Wang W. Laser Welding of Fiber and Quartz Glass Ferrule. MICROMACHINES 2023; 14:mi14050939. [PMID: 37241563 DOI: 10.3390/mi14050939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023]
Abstract
Optical fiber sensors fabricated by bonding have several limitations. To address these limitations, a CO2 laser welding process for an optical fiber and quartz glass ferrule is proposed in this study. A deep penetration welding method with optimal penetration (penetrating the base material only) is presented to weld a workpiece according to the requirements of the optical fiber light transmission, size characteristics of the optical fiber, and the keyhole effect of the deep penetration laser welding. Moreover, the influence of laser action time on the keyhole penetration is studied. Finally, laser welding is performed with a frequency of 24 kHz, power of 60 W, and duty cycle of 80% for 0.9 s. Subsequently, the optical fiber is subjected to out-of-focus annealing (0.83 mm, 20% duty cycle). The results show that deep penetration welding produces a perfect welding spot and has good quality; the hole generated from deep penetration welding has a smooth surface; the fiber can bear a maximum tensile force of 1.766 N. The performance of the optical fiber sensor is stable, and the maximum pressure deviation corresponding to the cavity length fluctuation is about 7.2 Pa. Additionally, the linear correlation coefficient R of the sensor is 0.99998.
Collapse
Affiliation(s)
- Wenhua Wang
- School of Electronic and Information Engineering, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
4
|
Jelinek M, Cip O, Lazar J, Mikel B. Design and Characterisation of an Optical Fibre Dosimeter Based on Silica Optical Fibre and Scintillation Crystal. SENSORS (BASEL, SWITZERLAND) 2022; 22:7312. [PMID: 36236411 PMCID: PMC9572585 DOI: 10.3390/s22197312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
In nuclear power plants, particle accelerators, and other nuclear facilities, measuring the level of ionising gamma radiation is critical for the safety and management of the operation and the environment's protection. However, in many cases, it is impossible to monitor ionising radiation directly at the required location continuously. This is typically either due to the lack of space to accommodate the entire dosimeter or in environments with high ionising radiation activity, electromagnetic radiation, and temperature, which significantly shorten electronics' lifetime. To allow for radiation measurement in such scenarios, we designed a fibre optic dosimeter that introduces an optical fibre link to deliver the scintillation radiation between the ionising radiation sensor and the detectors. The sensors can thus be placed in space-constrained and electronically hostile locations. We used silica optical fibres that withstand high radiation doses, high temperatures, and electromagnetic interference. We use a single photon counter and a photomultiplier to detect the transmitted scintillation radiation. We have shown that selected optical fibres, combined with different scintillation materials, are suitable for measuring gamma radiation levels in hundreds of kBq. We present the architecture of the dosimeter and its experimental characterisation with several combinations of optical fibres, detectors, and scintillation crystals.
Collapse
Affiliation(s)
- Michal Jelinek
- The Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 3058/10, 616 00 Brno, Czech Republic
- Institute of Scientific Instruments of the CAS v. v. i., 612 64 Brno, Czech Republic
| | - Ondrej Cip
- Institute of Scientific Instruments of the CAS v. v. i., 612 64 Brno, Czech Republic
| | - Josef Lazar
- Institute of Scientific Instruments of the CAS v. v. i., 612 64 Brno, Czech Republic
| | - Bretislav Mikel
- Institute of Scientific Instruments of the CAS v. v. i., 612 64 Brno, Czech Republic
| |
Collapse
|
5
|
Belkheir M, Rouissat M, Mokaddem A, Doumi B, Boutaous A. Studying the effect of polymethyl methacrylate polymer opticals fibers (POFs) on the performance of composite materials based on the polyether ether ketone (PEEK) polymer matrix. EMERGENT MATERIALS 2022; 5:2075-2085. [PMID: 35692304 PMCID: PMC9171084 DOI: 10.1007/s42247-022-00392-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/24/2022] [Indexed: 05/05/2023]
Abstract
More recently, various techniques have been implemented for the sensors manufacturing purpose, such as fiber Bragg gratings fibers (FBG) that allows variable core refractive index suitable for a large scale of measurements types, fiber optic evanescent waves (FOEW) for water parameters measurement, microstructured and crystal photonic optical fibers, polymers optical fiber (POFs), and so on. In this perspective, the objective of this work is to study the reliability and the origin of the resistance of each fiber-matrix interface of the composite materials PMMA/PEEK, Topas/PEEK, and Topas-Zeonex/PEEK. The genetic simulation is based on the probabilistic approach of Weibull to calculate the damage at the interface by crossing the two damages of the matrix and the fiber respectively. The results show that the PMMA/PEEK composite is the most resistant to the mechanical stresses applied compared to those Topas/PEEK and Topas-Zeonex/PEEK; these results were confirmed by the level of damage to the interface observed for the studied materials. The performed calculations are in good agreement with the analytical results of Cox, where he demonstrated that Young's modulus of fibers have an important influence on the shear strength of the fiber-matrix interface of composite materials. Based on the obtained results, the present study gives the opportunity for the proposed materials (PMMA/PEEK and Zeonex/PEEK) to be as potential candidates for the smart digital applications and telecoms aims.
Collapse
Affiliation(s)
- Mohammed Belkheir
- Laboratoire d’Instrumentation Et Matériaux Avancés, Centre Universitaire Nour Bachir El-Bayadh, 32000 El-Bayadh, Algeria
| | - Mehdi Rouissat
- Laboratoire STIC (Université de Tlemcen), Tlemce, Algeria
- Centre Universitaire Nour Bachir El-Bayadh, 32000 El-Bayadh, Algeria
| | - Allel Mokaddem
- Laboratoire d’Instrumentation Et Matériaux Avancés, Centre Universitaire Nour Bachir El-Bayadh, 32000 El-Bayadh, Algeria
| | - Bendouma Doumi
- Laboratoire d’Instrumentation Et Matériaux Avancés, Centre Universitaire Nour Bachir El-Bayadh, 32000 El-Bayadh, Algeria
- Département Technologie Des Matériaux, Faculté de Physique, Université des Sciences et de la Technologie, USTO-MB, Oran, Algeria
| | - Ahmed Boutaous
- Faculty of Sciences, Department of Physics, Dr Tahar Moulay University of Saïda, 20000 Saïda, Algeria
| |
Collapse
|
6
|
Belkheir M, Rouissat M, Mokaddem A, Doumi B, Boutaous A. Studying the effect of polymethyl methacrylate polymer opticals fibers (POFs) on the performance of composite materials based on the polyether ether ketone (PEEK) polymer matrix. EMERGENT MATERIALS 2022; 5:2075-2085. [PMID: 35692304 DOI: 10.1007/s42247-022-00353-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/24/2022] [Indexed: 05/22/2023]
Abstract
More recently, various techniques have been implemented for the sensors manufacturing purpose, such as fiber Bragg gratings fibers (FBG) that allows variable core refractive index suitable for a large scale of measurements types, fiber optic evanescent waves (FOEW) for water parameters measurement, microstructured and crystal photonic optical fibers, polymers optical fiber (POFs), and so on. In this perspective, the objective of this work is to study the reliability and the origin of the resistance of each fiber-matrix interface of the composite materials PMMA/PEEK, Topas/PEEK, and Topas-Zeonex/PEEK. The genetic simulation is based on the probabilistic approach of Weibull to calculate the damage at the interface by crossing the two damages of the matrix and the fiber respectively. The results show that the PMMA/PEEK composite is the most resistant to the mechanical stresses applied compared to those Topas/PEEK and Topas-Zeonex/PEEK; these results were confirmed by the level of damage to the interface observed for the studied materials. The performed calculations are in good agreement with the analytical results of Cox, where he demonstrated that Young's modulus of fibers have an important influence on the shear strength of the fiber-matrix interface of composite materials. Based on the obtained results, the present study gives the opportunity for the proposed materials (PMMA/PEEK and Zeonex/PEEK) to be as potential candidates for the smart digital applications and telecoms aims.
Collapse
Affiliation(s)
- Mohammed Belkheir
- Laboratoire d'Instrumentation Et Matériaux Avancés, Centre Universitaire Nour Bachir El-Bayadh, 32000 El-Bayadh, Algeria
| | - Mehdi Rouissat
- Laboratoire STIC (Université de Tlemcen), Tlemce, Algeria
- Centre Universitaire Nour Bachir El-Bayadh, 32000 El-Bayadh, Algeria
| | - Allel Mokaddem
- Laboratoire d'Instrumentation Et Matériaux Avancés, Centre Universitaire Nour Bachir El-Bayadh, 32000 El-Bayadh, Algeria
| | - Bendouma Doumi
- Laboratoire d'Instrumentation Et Matériaux Avancés, Centre Universitaire Nour Bachir El-Bayadh, 32000 El-Bayadh, Algeria
- Département Technologie Des Matériaux, Faculté de Physique, Université des Sciences et de la Technologie, USTO-MB, Oran, Algeria
| | - Ahmed Boutaous
- Faculty of Sciences, Department of Physics, Dr Tahar Moulay University of Saïda, 20000 Saïda, Algeria
| |
Collapse
|