1
|
Santopolo G, Clemente A, González-Freire M, Russell SM, Vaquer A, Barón E, Aranda M, Socias A, Del Castillo A, Borges M, de la Rica R. Plasma-induced nanoparticle aggregation for stratifying COVID-19 patients according to disease severity. SENSORS AND ACTUATORS. B, CHEMICAL 2022; 373:132638. [PMID: 36124254 PMCID: PMC9476366 DOI: 10.1016/j.snb.2022.132638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Stratifying patients according to disease severity has been a major hurdle during the COVID-19 pandemic. This usually requires evaluating the levels of several biomarkers, which may be cumbersome when rapid decisions are required. In this manuscript we show that a single nanoparticle aggregation test can be used to distinguish patients that require intensive care from those that have already been discharged from the intensive care unit (ICU). It consists of diluting a platelet-free plasma sample and then adding gold nanoparticles. The nanoparticles aggregate to a larger extent when the samples are obtained from a patient in the ICU. This changes the color of the colloidal suspension, which can be evaluated by measuring the pixel intensity of a photograph. Although the exact factor or combination of factors behind the different aggregation behavior is unknown, control experiments demonstrate that the presence of proteins in the samples is crucial for the test to work. Principal component analysis demonstrates that the test result is highly correlated to biomarkers of prognosis and inflammation that are commonly used to evaluate the severity of COVID-19 patients. The results shown here pave the way to develop nanoparticle aggregation assays that classify COVID-19 patients according to disease severity, which could be useful to de-escalate care safely and make a better use of hospital resources.
Collapse
Key Words
- AST, aspartate aminotransferaseALT, alanine aminotransferase
- Alb, albumin
- C1.75, protein concentration 1.75 × 10-4 g·dL-1
- CPImin, protein concentration at PImin
- CRP, C-reactive protein
- Colorimetric
- Creat, creatinine
- D-D, D-dimer
- Ferr, ferritin
- GGT, gamma-glutamyl transferase
- Glu, glucose
- Gold
- Hb, hemoglobin
- ICU, intensive care unit
- INR, international normalized ratio (prothrombin time)
- LDH, lactate dehydrogenase
- LSPR, localized surface plasmon resonance
- MCV, mean corpuscular volume
- MPV, mean platelet volume
- Mono, monocytes
- NIR, near-infrared
- NLR, neutrophil-to-lymphocyte ratio
- NTA, nanoparticle tracking analysis
- PDW, platelet distribution width
- PI, pixel intensity
- PI1.75, pixel intensity at C1.75
- PIdil, pixel intensity at plasma dilution 1:31250
- PImin, minimum value of pixel intensity
- PLR, platelet-to-lymphocyte ratio
- Plasmonic
- RBC, red blood cells
- RDW, red cell distribution width
- SARS-CoV-2
- Sepsis
- TG, triglycerides
- TotProt, total protein concentration
- WBC, white blood cells
Collapse
Affiliation(s)
- Giulia Santopolo
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- University of the Balearic Islands (UIB), Chemistry Department, 07122 Palma, Spain
| | - Antonio Clemente
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Marta González-Freire
- Translational Research In Aging and Longevity (TRIAL) group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Steven M Russell
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Andreu Vaquer
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- University of the Balearic Islands (UIB), Chemistry Department, 07122 Palma, Spain
| | - Enrique Barón
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | - María Aranda
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- Multidisciplinary Sepsis Unit, ICU, Son Llàtzer University Hospital, 07198 Palma, Spain
| | - Antonia Socias
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- Multidisciplinary Sepsis Unit, ICU, Son Llàtzer University Hospital, 07198 Palma, Spain
| | - Alberto Del Castillo
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- Multidisciplinary Sepsis Unit, ICU, Son Llàtzer University Hospital, 07198 Palma, Spain
| | - Marcio Borges
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- Multidisciplinary Sepsis Unit, ICU, Son Llàtzer University Hospital, 07198 Palma, Spain
| | - Roberto de la Rica
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain
| |
Collapse
|
2
|
Ultra-Fast and Sensitive Screening for Antibodies against the SARS-CoV-2 S1 Spike Antigen with a Portable Bioelectric Biosensor. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
As a consequence of the progress of the global vaccination against the COVID-19 disease, fast, accurate and affordable assays are needed for monitoring the efficiency of developing immunity against the coronavirus at the population level. In this context, we herewith report the proof-of-concept development of an innovative bioelectric biosensor for the ultra-detection (in less than three minutes) of IgG antibodies against the SARS-CoV-2 S1 spike antigen. The biosensor comprises a disposable set of screen-printed electrodes upon which are immobilized cells engineered to bear the S1 protein on their surface. When anti-S1 antibodies are presented to the engineered cell population, a rapid, specific, and selective change of the cell membrane potential occurs; this is in turn recorded by a bespoke portable potentiometer. End results are communicated via Bluetooth to a smartphone equipped with a customized user interface. By using the novel biosensor, anti-S1 antibodies could be detected at concentrations as low as 5 ng/mL. In a preliminary clinical trial, positive results were derived from patients vaccinated or previously infected by the virus. Selectivity over other respiratory viruses was demonstrated by the lack of cross-reactivity to antibodies against rhinovirus. After further clinical validation and extension to also screen IgM, IgA and possible neutralizing antibodies, our approach is intended to facilitate the mass and reliable detection of antibodies in the early stages following vaccination and to monitor the duration and level of acquired immunity both in a clinical and self-testing environment.
Collapse
|