1
|
Kamaci M. A Polycaprolactone-Capped ZnO Quantum Dots-Based Fluorometric Sensor for the Detection of Fe 3+ Ions in Seawater. J Fluoresc 2024; 34:1643-1654. [PMID: 37589936 DOI: 10.1007/s10895-023-03394-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
Fe3+ ion plays a very active role in life, agriculture, and industry. Human health and the environment are seriously affected by the abnormal presence or excess of this cation. Therefore, the development of a fast, reliable, sensitive, and simple fluorescent probe to detect this cation is crucial. In the present paper, polycaprolactone-capped zinc oxide quantum dots were prepared for the determination of Fe3+ ions. The proposed fluorescent chemosensor exhibited a fluorometric and strong quenching effect toward Fe3+ ions at two wavelengths (303 and 602 nm). The limit of detection (LOD) was calculated as 0.410, and 0.333µM at the mentioned wavelengths. Also, the binding stoichiometric ratio was calculated as 1:1 by Job's plot. The findings indicated that the PCL@ZnO colorimetric chemosensor could be successfully applied with reliable, and good accuracy for the detection of Fe3+ ions in real seawater samples.
Collapse
Affiliation(s)
- Musa Kamaci
- Piri Reis University, Tuzla, 34940, Istanbul, Turkey.
| |
Collapse
|
2
|
Shahbaz M, Dar B, Sharif S, Khurshid MA, Hussain S, Riaz B, Musaffa M, Khalid H, Ch AR, Mahboob A. Recent advances in the fluorimetric and colorimetric detection of cobalt ions. RSC Adv 2024; 14:9819-9847. [PMID: 38528922 PMCID: PMC10961957 DOI: 10.1039/d4ra00445k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/08/2024] [Indexed: 03/27/2024] Open
Abstract
Cobalt is an essential metal to maintain several functions in the human body and is present in functional materials for numerous applications. Thus, to monitor these functions, it is necessary to develop suitable probes for the detection of cobalt. Presently, researchers are focused on designing different chemosensors for the qualitative and quantitative detection of the metal ions. Among the numerous methods devised for the identification of cobalt ions, colorimetric and fluorimetric techniques are considered the best choice due to their user-friendly nature, sensitivity, accuracy, linearity and robustness. In these techniques, the interaction of the analyte with the chemosensor leads to structural changes in the molecule, causing the emission and excitation intensities (bathochromic, hyperchromic, hypochromic, and hypsochromic) to change with a change in the concentration of the analyte. In this review, the recent advancements in the fluorimetric and colorimetric detection of cobalt ions are systematically summarized, and it is concluded that the development of chemosensors having distinctive colour changes when interacting with cobalt ions has been targeted for on-site detection. The chemosensors are grouped in various categories and their comparison and the discussion of computational studies will enable readers to have a quick overview and help in designing effective and efficient probes for the detection of cobalt in the field of chemo-sensing.
Collapse
Affiliation(s)
- Muhammad Shahbaz
- Materials Chemistry Laboratory, Department of Chemistry, Government College University Lahore 5400-Pakistan
| | - Birra Dar
- Materials Chemistry Laboratory, Department of Chemistry, Government College University Lahore 5400-Pakistan
| | - Shahzad Sharif
- Materials Chemistry Laboratory, Department of Chemistry, Government College University Lahore 5400-Pakistan
| | - Muhammad Aqib Khurshid
- Materials Chemistry Laboratory, Department of Chemistry, Government College University Lahore 5400-Pakistan
| | - Sajjad Hussain
- School of Chemistry, Faculty of Basic Sciences and Mathematics, Minhaj Univeristy Lahore Pakistan
| | - Bilal Riaz
- Materials Chemistry Laboratory, Department of Chemistry, Government College University Lahore 5400-Pakistan
| | - Maryam Musaffa
- Materials Chemistry Laboratory, Department of Chemistry, Government College University Lahore 5400-Pakistan
| | - Hania Khalid
- Materials Chemistry Laboratory, Department of Chemistry, Government College University Lahore 5400-Pakistan
| | - Ayoub Rashid Ch
- Materials Chemistry Laboratory, Department of Chemistry, Government College University Lahore 5400-Pakistan
| | - Abia Mahboob
- Materials Chemistry Laboratory, Department of Chemistry, Government College University Lahore 5400-Pakistan
| |
Collapse
|
3
|
Dos Santos de Almeida W, Gomes Abegão LM, Vinicius Silva Alves A, de Oliveira Souza Silva J, Oliveira de Souza S, d'Errico F, Midori Sussuchi E. Carbon Dots based Tissue Equivalent Dosimeter as an Ionizing Radiation Sensor. Chemistry 2024; 30:e202303771. [PMID: 38118132 DOI: 10.1002/chem.202303771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/22/2023]
Abstract
This work explores the potential of carbon dots as a fluorescent probe in the determination of heavy ions and as an electrochemical biosensor. It also discusses how carbon dots can be introduced into the Fricke solution to potentially serve as an ionizing radiation sensor. The study presents a novel tissue equivalent dosimeter carbon dots-based as an ionizing radiation sensor. The methodology for the synthesis of Nitrogen-doped Carbon Dots N-CDs and the characterization of the material are described. The results show that the N-CDs have a high sensitivity to ionizing radiation and can be used as a dosimeter for radiation detection. The study also discusses the limitations and challenges of using carbon dots as a dosimeter for ionizing radiation. Overall, this study provides valuable insights into the potential applications of carbon dots in different fields and highlights the importance of further research in this area.
Collapse
Affiliation(s)
- Wandson Dos Santos de Almeida
- Grupo de Pesquisa em sensores eletroquímicos e Nano(Materiais) - SenM, Laboratório de Corrosão e Nanotecnolodia- LCNT, Programa de Pós-Graduação em Química - Departamento de Química, Universidade Federal de Sergipe, Av. Marcelo Deda Chagas, 304, Rosa Elze - São Cristóvão/SE, CEP 49107230
| | - Luis Miguel Gomes Abegão
- Grupo de Fotônica, Instituto de Física, Universidade Federal de Goiás, Av. Esperança, 1533, Campus, Samambaia, Goiânia/GO, CEP 74690900
| | - Anderson Vinicius Silva Alves
- Programa de Pós-Graduação em Física, Universidade Federal de Sergipe, Av. Marcelo Deda Chagas, 304, Rosa Elze - São Cristóvão/SE, CEP 49107230
| | - Jonatas de Oliveira Souza Silva
- Grupo de Pesquisa em sensores eletroquímicos e Nano(Materiais) - SenM, Laboratório de Corrosão e Nanotecnolodia- LCNT, Programa de Pós-Graduação em Química - Departamento de Química, Universidade Federal de Sergipe, Av. Marcelo Deda Chagas, 304, Rosa Elze - São Cristóvão/SE, CEP 49107230
| | - Susana Oliveira de Souza
- Programa de Pós-Graduação em Física, Universidade Federal de Sergipe, Av. Marcelo Deda Chagas, 304, Rosa Elze - São Cristóvão/SE, CEP 49107230
| | | | - Eliana Midori Sussuchi
- Grupo de Pesquisa em sensores eletroquímicos e Nano(Materiais) - SenM, Laboratório de Corrosão e Nanotecnolodia- LCNT, Programa de Pós-Graduação em Química - Departamento de Química, Universidade Federal de Sergipe, Av. Marcelo Deda Chagas, 304, Rosa Elze - São Cristóvão/SE, CEP 49107230
| |
Collapse
|
4
|
Pizzoferrato R. Optical Chemical Sensors: Design and Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23115284. [PMID: 37300010 DOI: 10.3390/s23115284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
More than ever, optical chemical sensing is a thriving research field with a strong outlook in terms of future development and penetration into growing industrial markets [...].
Collapse
Affiliation(s)
- Roberto Pizzoferrato
- Department of Industrial Engineering, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
5
|
Pizzoferrato R, Bisauriya R, Antonaroli S, Cabibbo M, Moro AJ. Colorimetric and Fluorescent Sensing of Copper Ions in Water through o-Phenylenediamine-Derived Carbon Dots. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23063029. [PMID: 36991739 PMCID: PMC10056730 DOI: 10.3390/s23063029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 06/12/2023]
Abstract
Fluorescent nitrogen and sulfur co-doped carbon dots (NSCDs) were synthesized using a simple one-step hydrothermal method starting from o-phenylenediamine (OPD) and ammonium sulfide. The prepared NSCDs presented a selective dual optical response to Cu(II) in water through the arising of an absorption band at 660 nm and simultaneous fluorescence enhancement at 564 nm. The first effect was attributed to formation of cuprammonium complexes through coordination with amino functional groups of NSCDs. Alternatively, fluorescence enhancement can be explained by the oxidation of residual OPD bound to NSCDs. Both absorbance and fluorescence showed a linear increase with an increase of Cu(II) concentration in the range 1-100 µM, with the lowest detection limit of 100 nM and 1 µM, respectively. NSCDs were successfully incorporated in a hydrogel agarose matrix for easier handling and application to sensing. The formation of cuprammonium complexes was strongly hampered in an agarose matrix while oxidation of OPD was still effective. As a result, color variations could be perceived both under white light and UV light for concentrations as low as 10 µM. Since these color changes were similarly perceived in tap and lake water samples, the present method could be a promising candidate for simple, cost-effective visual monitoring of copper onsite.
Collapse
Affiliation(s)
- Roberto Pizzoferrato
- Department of Industrial Engineering, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Ramanand Bisauriya
- Department of Industrial Engineering, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Simonetta Antonaroli
- Department of Chemical Sciences and Technology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Marcello Cabibbo
- Department of Industrial Engineering and Mathematical Sciences (DIISM), Università Politecnica Delle Marche, 60131 Ancona, Italy
| | - Artur J. Moro
- LAQV-REQUIMTE, Departamento de Química, CQFB, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
6
|
Sonaimuthu M, Ganesan S, Anand S, Kumar AJ, Palanisamy S, You S, Velsankar K, Sudhahar S, Lo HM, Lee YR. Multiple heteroatom dopant carbon dots as a novel photoluminescent probe for the sensitive detection of Cu 2+ and Fe 3+ ions in living cells and environmental sample analysis. ENVIRONMENTAL RESEARCH 2023; 219:115106. [PMID: 36574795 DOI: 10.1016/j.envres.2022.115106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/13/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Heavy metal ion pollution harms human health and the environment and continues to worsen. Here, we report the synthesis of boron (B), phosphorous (P), nitrogen (N), and sulfur (S) co-doped carbon dots (BP/NS-CDs) by a one-step facile hydrothermal process. The optimum synthetic parameters are of 180 °C temperature, 12 h reaction time and 15% of PBA mass. The as-synthesized BP/NS-CDs exhibits excellent water solubility, strong green photoluminescence (PL) at 510 nm, and a high quantum yield of 22.4%. Moreover, BP/NS-CDs presented high monodispersity (7.2 ± 0.45 nm), excitation-dependent emission, PL stability over large pH, and high ionic strength. FTIR, XRD, and XPS are used to confirm the successful B and P doping of BP/NS-CDs. BP/NS-CD photoluminescent probes are selectively quenched by Cu2+ and Fe3+ ions but showed no response to the presence of other metal cations. The PL emission of BP/NS-CDs exhibited a good linear correlation with Cu2+ and Fe3+ concentrations with detection limits of 0.18 μM and 0.27 μM for Cu2+ and Fe3+, respectively. Furthermore, the HCT116 survival cells kept at 99.4 ± 1.3% and cell imaging capability, when the BP/NS-CDs concentration is up to 300 μg/mL by MTT assay. The proposed sensor is potential applications for the detection of Cu2+ and Fe3+ ions in environmental water samples.
Collapse
Affiliation(s)
- Mohandoss Sonaimuthu
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Sivarasan Ganesan
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung, 41349, Taiwan
| | - Singaravelu Anand
- Department of Chemistry, Saveetha Engineering College, Chennai, 602105, Tamilnadu, India
| | | | - Subramanian Palanisamy
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneungdaehangno, Gangneung, Gangwon, 25457, Republic of Korea
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneungdaehangno, Gangneung, Gangwon, 25457, Republic of Korea
| | - K Velsankar
- Department of Physics, Alagappa University, Karikudi, 630003, Tamilnadu, India
| | | | - Huang-Mu Lo
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung, 41349, Taiwan.
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
7
|
Dorontic S, Bonasera A, Scopelliti M, Markovic O, Bajuk Bogdanović D, Ciasca G, Romanò S, Dimkić I, Budimir M, Marinković D, Jovanovic S. Gamma-Ray-Induced Structural Transformation of GQDs towards the Improvement of Their Optical Properties, Monitoring of Selected Toxic Compounds, and Photo-Induced Effects on Bacterial Strains. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12152714. [PMID: 35957147 PMCID: PMC9370814 DOI: 10.3390/nano12152714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 06/03/2023]
Abstract
Structural modification of different carbon-based nanomaterials is often necessary to improve their morphology and optical properties, particularly the incorporation of N-atoms in graphene quantum dots (GQDs). Here, a clean, simple, one-step, and eco-friendly method for N-doping of GQDs using gamma irradiation is reported. GQDs were irradiated in the presence of the different ethylenediamine (EDA) amounts (1 g, 5 g, and 10 g) and the highest % of N was detected in the presence of 10 g. N-doped GQDs emitted strong, blue photoluminescence (PL). Photoluminescence quantum yield was increased from 1.45, as obtained for non-irradiated dots, to 7.24% for those irradiated in the presence of 1 g of EDA. Modified GQDs were investigated as a PL probe for the detection of insecticide Carbofuran (2,2-Dimethyl-2,3-dihydro-1-benzofuran-7-yl methylcarbamate) and herbicide Amitrole (3-amino-1,2,4-triazole). The limit of detection was 5.4 μmol L-1 for Carbofuran. For the first time, Amitrole was detected by GQDs in a turn-off/turn-on mechanism using Pd(II) ions as a quenching agent. First, Pd(II) ions were quenched (turn-off) PL of GQDs, while after Amitrole addition, PL was recovered linearly with Amitrole concentration (turn-on). LOD was 2.03 μmol L-1. These results suggest that modified GQDs can be used as an efficient new material for Carbofuran and Amitrole detection. Furthermore, the phototoxicity of dots was investigated on both Gram-positive and Gram-negative bacterial strains. When bacterial cells were exposed to different GQD concentrations and illuminated with light of 470 nm wavelength, the toxic effects were not observed.
Collapse
Affiliation(s)
- Sladjana Dorontic
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Aurelio Bonasera
- Department of Physics and Chemistry—Emilio Segrè, University of Palermo, 90128 Palermo, Italy
- Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Palermo Research Unit, Viale delle Scienze, Bld. 17, 90128 Palermo, Italy
| | - Michelangelo Scopelliti
- Department of Physics and Chemistry—Emilio Segrè, University of Palermo, 90128 Palermo, Italy
- Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Palermo Research Unit, Viale delle Scienze, Bld. 17, 90128 Palermo, Italy
| | - Olivera Markovic
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | | | - Gabriele Ciasca
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 11158 Rome, Italy
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11158 Belgrade, Serbia
| | - Sabrina Romanò
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 11158 Rome, Italy
| | - Ivica Dimkić
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11158 Belgrade, Serbia
| | - Milica Budimir
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Dragana Marinković
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Svetlana Jovanovic
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| |
Collapse
|
8
|
Omar NAS, Fen YW, Irmawati R, Hashim HS, Ramdzan NSM, Fauzi NIM. A Review on Carbon Dots: Synthesis, Characterization and Its Application in Optical Sensor for Environmental Monitoring. NANOMATERIALS 2022; 12:nano12142365. [PMID: 35889589 PMCID: PMC9321155 DOI: 10.3390/nano12142365] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 01/17/2023]
Abstract
The development of carbon dots (CDs), either using green or chemical precursors, has inevitably led to their wide range application, from bioimaging to optoelectronic devices. The reported precursors and properties of these CDs have opened new opportunities for the future development of high-quality CDs and applications. Green precursors were classified into fruits, vegetables, flowers, leaves, seeds, stem, crop residues, fungi/bacteria species, and waste products, while the chemical precursors were classified into acid reagents and non-acid reagents. This paper quickly reviews ten years of the synthesis of CDs using green and chemical precursors. The application of CDs as sensing materials in optical sensor techniques for environmental monitoring, including the detection of heavy metal ions, phenol, pesticides, and nitroaromatic explosives, was also discussed in this review. This profound review will offer knowledge for the upcoming community of researchers interested in synthesizing high-quality CDs for various applications.
Collapse
Affiliation(s)
- Nur Alia Sheh Omar
- Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (N.A.S.O.); (R.I.); (H.S.H.); (N.S.M.R.)
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Yap Wing Fen
- Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (N.A.S.O.); (R.I.); (H.S.H.); (N.S.M.R.)
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Correspondence:
| | - Ramli Irmawati
- Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (N.A.S.O.); (R.I.); (H.S.H.); (N.S.M.R.)
| | - Hazwani Suhaila Hashim
- Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (N.A.S.O.); (R.I.); (H.S.H.); (N.S.M.R.)
| | - Nur Syahira Md Ramdzan
- Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (N.A.S.O.); (R.I.); (H.S.H.); (N.S.M.R.)
| | - Nurul Illya Muhamad Fauzi
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| |
Collapse
|