1
|
Khan AA, Kim JH. Recent advances in materials and manufacturing of implantable devices for continuous health monitoring. Biosens Bioelectron 2024; 261:116461. [PMID: 38850737 DOI: 10.1016/j.bios.2024.116461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/30/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Implantable devices are vital in healthcare, enabling continuous monitoring, early disease detection, informed decision-making, enhanced outcomes, cost reduction, and chronic condition management. These devices provide real-time data, allowing proactive healthcare interventions, and contribute to overall improvements in patient care and quality of life. The success of implantable devices relies on the careful selection of materials and manufacturing methods. Recent materials research and manufacturing advancements have yielded implantable devices with enhanced biocompatibility, reliability, and functionality, benefiting human healthcare. This paper provides a comprehensive overview of the latest developments in implantable medical devices, emphasizing the importance of material selection and manufacturing methods, including biocompatibility, self-healing capabilities, corrosion resistance, mechanical properties, and conductivity. It explores various manufacturing techniques such as microfabrication, 3D printing, laser micromachining, electrospinning, screen printing, inkjet printing, and nanofabrication. The paper also discusses challenges and limitations in the field, including biocompatibility concerns, privacy and data security issues, and regulatory hurdles for implantable devices.
Collapse
Affiliation(s)
- Akib Abdullah Khan
- School of Engineering and Computer Science, Washington State University, Vancouver, WA, 98686, USA
| | - Jong-Hoon Kim
- School of Engineering and Computer Science, Washington State University, Vancouver, WA, 98686, USA; Department of Mechanical Engineering, University of Washington, WA, 98195, USA.
| |
Collapse
|
2
|
Towett G, Snead RS, Marczika J, Prada I. Discursive framework for a multi-disease digital health passport in Africa: a perspective. Global Health 2024; 20:64. [PMID: 39164710 PMCID: PMC11337601 DOI: 10.1186/s12992-024-01067-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/05/2024] [Indexed: 08/22/2024] Open
Abstract
Africa's dual burden of rising incidence of infectious diseases and increasing prevalence of non-communicable diseases (NCDs), such as cardiovascular diseases and diabetes, demands innovative approaches to disease surveillance, response, and cross-border health management in response to growing economic integration and global connectivity. In this context, we propose a discursive framework for the development and implementation of a multi-disease digital health passport (MDDHP) in Africa. The MDDHP would serve as a secure platform for storing and sharing individual health data, offering a comprehensive solution to track and respond to infectious diseases, facilitate the management of NCDs, and improve healthcare access across borders. Empowering individuals to proactively manage their health and improve overall outcomes is a key aspect of the MDDHP. In the paper, we examine the key elements necessary to effectively implement MDDHP, focusing on minimizing risks, maintaining efficacy, and driving its adoption while also taking into consideration the unique contexts of the continent. The paper is intended to provide an understanding of the key principles involved and contribute to the discussion on the development and successful implementation of MDDHP in Africa.
Collapse
Affiliation(s)
- Gideon Towett
- The Self Research Institute, Broken Arrow, Oklahoma, USA.
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, Kenya.
| | | | - Julia Marczika
- The Self Research Institute, Broken Arrow, Oklahoma, USA
| | - Isaac Prada
- The Self Research Institute, Broken Arrow, Oklahoma, USA
| |
Collapse
|
3
|
Seghier ML, Maalej N. Rescue equipment should include portable medical imaging systems. Sci Bull (Beijing) 2024; 69:1819-1822. [PMID: 38755086 DOI: 10.1016/j.scib.2024.04.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Affiliation(s)
- Mohamed L Seghier
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates.
| | - Nabil Maalej
- Physics Department, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates.
| |
Collapse
|
4
|
Chenani H, Saeidi M, Rastkhiz MA, Bolghanabadi N, Aghaii AH, Orouji M, Hatamie A, Simchi A. Challenges and Advances of Hydrogel-Based Wearable Electrochemical Biosensors for Real-Time Monitoring of Biofluids: From Lab to Market. A Review. Anal Chem 2024; 96:8160-8183. [PMID: 38377558 DOI: 10.1021/acs.analchem.3c03942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Affiliation(s)
- Hossein Chenani
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Mohsen Saeidi
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - MahsaSadat Adel Rastkhiz
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Nafiseh Bolghanabadi
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Amir Hossein Aghaii
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Mina Orouji
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Amir Hatamie
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden; Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, PO Box 45195-1159, Zanjan 45137-66731, Iran
| | - Abdolreza Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
- Center for Bioscience and Technology, Institute for Convergence Science and Technology, Sharif University of Technology, Tehran 14588-89694, Iran
| |
Collapse
|
5
|
Tanaka M, Ishii S, Matsuoka A, Tanabe S, Matsunaga S, Rahmani A, Dutt N, Rasouli M, Nyamathi A. Perspectives of Japanese elders and their healthcare providers on use of wearable technology to monitor their health at home: A qualitative exploration. Int J Nurs Stud 2024; 152:104691. [PMID: 38262231 DOI: 10.1016/j.ijnurstu.2024.104691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/20/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND With 24 million Japanese elderly aging at home, the challenges of managing chronic conditions are significant. As many Japanese elders manage multiple chronic conditions, investigating the usefulness of wearable health devices for this population is warranted. AIM The purpose of this qualitative study, using grounded theory, was to explore the perspectives of Japanese elders, their caretakers, and their healthcare providers on the use of technology and wearable devices to monitor health conditions and keep Japanese elders safe at home. METHODS In conducting this study, a community advisory board was first established to guide the research design; six focus groups and two one-on-one interviews were conducted, with a total of 21 participants. RESULTS Four major themes emerged from the analysis: 1) Current Status of Health Issues Experienced by Japanese Elders and Ways of Being Monitored; 2) Current Use of Monitoring Technology and Curiosity about Use of the Latest Digital Technology to Keep Elderly Healthy at Home; 3) Perceived Advantages of Wearing Sensor Technology; and 4) Perceived Disadvantages of Wearing Technology. Many of the elderly participants were interested in using monitoring devices at home, particularly if not complicated. Healthcare workers found monitoring technologies particularly useful during the isolation of the COVID-19 pandemic. Elderly participants felt cost and technical issues could be barriers to using monitoring devices. CONCLUSION While there are challenges to utilizing monitoring devices, the potential to aid the aging population of Japan justifies further investigation into the effectiveness of these devices. This study was not registered with a research trial registry.
Collapse
Affiliation(s)
- Mika Tanaka
- School of Nursing, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Shinobu Ishii
- School of Nursing, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Akiko Matsuoka
- School of Nursing, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Sachiko Tanabe
- School of Nursing, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Shota Matsunaga
- Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Amir Rahmani
- Sue & Bill Gross School of Nursing, University of California, Irvine, Irvine, CA, United States of America
| | - Nikil Dutt
- Bren School of Information and Computer Sciences, University of California, Irvine, Irvine, CA, United States of America
| | - Mahkameh Rasouli
- Sue & Bill Gross School of Nursing, University of California, Irvine, Irvine, CA, United States of America
| | - Adeline Nyamathi
- Sue & Bill Gross School of Nursing, University of California, Irvine, Irvine, CA, United States of America.
| |
Collapse
|
6
|
Fan P, Fan H, Wang S. From emerging modalities to advanced applications of hydrogel piezoelectrics based on chitosan, gelatin and related biological macromolecules: A review. Int J Biol Macromol 2024; 262:129691. [PMID: 38272406 DOI: 10.1016/j.ijbiomac.2024.129691] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/29/2023] [Accepted: 01/21/2024] [Indexed: 01/27/2024]
Abstract
The rapid development of functional materials and manufacturing technologies is fostering advances in piezoelectric materials (PEMs). PEMs can convert mechanical energy into electrical energy. Unlike traditional power sources, which need to be replaced and are inconvenient to carry, PEMs have extensive potential applications in smart wearable and implantable devices. However, the application of conventional PEMs is limited by their poor flexibility, low ductility, and susceptibility to fatigue failure. Incorporating hydrogels, which are flexible, stretchable, and self-healing, providing a way to overcome these limitations of PEMs. Hydrogel-based piezoelectric materials (H-PEMs) not only resolve the shortcomings of traditional PEMs but also provide biocompatibility and more promising application potential. This paper summarizes the working principle of H-PEMs. Recent advances in the use of H-PEMs as sensors and in vitro energy harvesting devices for smart wearable devices are described in detail, with emphasis on application scenarios in human body like fingers, wrists, ankles, and feet. In addition, the recent progress of H-PEMs in implantable medical devices, especially the potential applications in human body parts such as bones, skin, and heart, are also elaborated. In addition, challenges and potential improvements in H-PEMs are discussed.
Collapse
Affiliation(s)
- Peng Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China
| | - Hengwei Fan
- Department of Hepatic Surgery Dept I, the Eastern Hepatobiliary Surgery Hospital, Navy Medical University, No. 225 Changhai Road, Shanghai 200438, PR China.
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China; Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, PR China.
| |
Collapse
|
7
|
Ahluwalia P, Ballur K, Leeman T, Vashisht A, Singh H, Omar N, Mondal AK, Vaibhav K, Baban B, Kolhe R. Incorporating Novel Technologies in Precision Oncology for Colorectal Cancer: Advancing Personalized Medicine. Cancers (Basel) 2024; 16:480. [PMID: 38339232 PMCID: PMC10854941 DOI: 10.3390/cancers16030480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 02/12/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most heterogeneous and deadly diseases, with a global incidence of 1.5 million cases per year. Genomics has revolutionized the clinical management of CRC by enabling comprehensive molecular profiling of cancer. However, a deeper understanding of the molecular factors is needed to identify new prognostic and predictive markers that can assist in designing more effective therapeutic regimens for the improved management of CRC. Recent breakthroughs in single-cell analysis have identified new cell subtypes that play a critical role in tumor progression and could serve as potential therapeutic targets. Spatial analysis of the transcriptome and proteome holds the key to unlocking pathogenic cellular interactions, while liquid biopsy profiling of molecular variables from serum holds great potential for monitoring therapy resistance. Furthermore, gene expression signatures from various pathways have emerged as promising prognostic indicators in colorectal cancer and have the potential to enhance the development of equitable medicine. The advancement of these technologies for identifying new markers, particularly in the domain of predictive and personalized medicine, has the potential to improve the management of patients with CRC. Further investigations utilizing similar methods could uncover molecular subtypes specific to emerging therapies, potentially strengthening the development of personalized medicine for CRC patients.
Collapse
Affiliation(s)
- Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (P.A.); (K.B.); (T.L.); (A.V.); (H.S.); (N.O.); (A.K.M.)
| | - Kalyani Ballur
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (P.A.); (K.B.); (T.L.); (A.V.); (H.S.); (N.O.); (A.K.M.)
| | - Tiffanie Leeman
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (P.A.); (K.B.); (T.L.); (A.V.); (H.S.); (N.O.); (A.K.M.)
| | - Ashutosh Vashisht
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (P.A.); (K.B.); (T.L.); (A.V.); (H.S.); (N.O.); (A.K.M.)
| | - Harmanpreet Singh
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (P.A.); (K.B.); (T.L.); (A.V.); (H.S.); (N.O.); (A.K.M.)
| | - Nivin Omar
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (P.A.); (K.B.); (T.L.); (A.V.); (H.S.); (N.O.); (A.K.M.)
| | - Ashis K. Mondal
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (P.A.); (K.B.); (T.L.); (A.V.); (H.S.); (N.O.); (A.K.M.)
| | - Kumar Vaibhav
- Department of Neurosurgery, Augusta University, Augusta, GA 30912, USA;
| | - Babak Baban
- Departments of Neurology and Surgery, Augusta University, Augusta, GA 30912, USA;
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (P.A.); (K.B.); (T.L.); (A.V.); (H.S.); (N.O.); (A.K.M.)
| |
Collapse
|
8
|
Martins Januário W, Prata ERBDA, Natali AJ, Prímola-Gomes TN. Normal gastrointestinal temperature values measured through ingestible capsules technology: a systematic review. J Med Eng Technol 2023; 47:389-395. [PMID: 38780358 DOI: 10.1080/03091902.2024.2354793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Climate change has amplified the importance of continuous and precise body core temperature (Tcore) monitoring in the everyday life. In this context, assessing Tcore through ingestible capsules technology, i.e., gastrointestinal temperature (Tgastrointestinal), emerges as a good alternative to prevent heat-related illness. Therefore, we conducted a systematic review to point out values of normal Tgastrointestinal measured through ingestible capsules in healthy humans. The study followed PRISMA guidelines and searched the PubMed and Scielo databases from 1971 to 2023. Our search strategy included the descriptors ("gastrointestinal temperature") AND ("measurement"), and eligible studies had to be written in English and measured Tgastrointestinal using ingestible capsules or sensors in healthy adults aged 18-59 at rest. Two pairs of researchers independently reviewed titles and abstracts and identified 35 relevant articles out of 1,088 in the initial search. An average value of 37.13 °C with a standard deviation of 0.24 °C was observed, independently of the gender. The values measured ranged from 36.70 °C to 37.69 °C. In conclusion, this systematic review pointed out the mean value of 37.13 ± 0.24 °C measured by ingestible capsules as reference for resting Tgastrointestinal in healthy adult individuals.
Collapse
Affiliation(s)
- William Martins Januário
- Departamento de Educação Física, Laboratório de Performance Humana, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil
| | | | - Antônio José Natali
- Departamento de Educação Física, Laboratório de Biologia do Exercício, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil
| | - Thales Nicolau Prímola-Gomes
- Departamento de Educação Física, Laboratório de Performance Humana, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil
| |
Collapse
|
9
|
Raveendran R, Prabakaran L, Senthil R, Yesudhason BV, Dharmalingam S, Sathyaraj WV, Atchudan R. Current Innovations in Intraocular Pressure Monitoring Biosensors for Diagnosis and Treatment of Glaucoma-Novel Strategies and Future Perspectives. BIOSENSORS 2023; 13:663. [PMID: 37367028 DOI: 10.3390/bios13060663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
Biosensors are devices that quantify biologically significant information required for diverse applications, such as disease diagnosis, food safety, drug discovery and detection of environmental pollutants. Recent advancements in microfluidics, nanotechnology and electronics have led to the development of novel implantable and wearable biosensors for the expedient monitoring of diseases such as diabetes, glaucoma and cancer. Glaucoma is an ocular disease which ranks as the second leading cause for loss of vision. It is characterized by the increase in intraocular pressure (IOP) in human eyes, which results in irreversible blindness. Currently, the reduction of IOP is the only treatment used to manage glaucoma. However, the success rate of medicines used to treat glaucoma is quite minimal due to their curbed bioavailability and reduced therapeutic efficacy. The drugs must pass through various barriers to reach the intraocular space, which in turn serves as a major challenge in glaucoma treatment. Rapid progress has been observed in nano-drug delivery systems for the early diagnosis and prompt therapy of ocular diseases. This review gives a deep insight into the current advancements in the field of nanotechnology for detecting and treating glaucoma, as well as for the continuous monitoring of IOP. Various nanotechnology-based achievements, such as nanoparticle/nanofiber-based contact lenses and biosensors that can efficiently monitor IOP for the efficient detection of glaucoma, are also discussed.
Collapse
Affiliation(s)
- Rubiya Raveendran
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Lokesh Prabakaran
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Rethinam Senthil
- Department of Pharmacology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600077, Tamil Nadu, India
| | - Beryl Vedha Yesudhason
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Sankari Dharmalingam
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Weslen Vedakumari Sathyaraj
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| |
Collapse
|
10
|
Litvinova O, Klager E, Yeung AWK, Tzvetkov NT, Kimberger O, Kletecka-Pulker M, Willschke H, Atanasov AG. Bibliometric analysis and evidence of clinical efficacy and safety of digital pills. Front Pharmacol 2023; 14:1023250. [PMID: 36755951 PMCID: PMC9899979 DOI: 10.3389/fphar.2023.1023250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/12/2023] [Indexed: 01/24/2023] Open
Abstract
Objectives: Digital pills are new technologies that aim to improve healthcare by increasing medication adherence. The aim of the work was a bibliometric analysis of clinical studies of digital pills and an assessment of the level of evidence of their effectiveness, safety, and prospects for the future. Materials and Methods: The studies were conducted using online databases such as ClinicalTrials.gov, Dimensions, and Web of Science for the period January 2012 to July 2022. The VOSviewer tool for building and visualizing bibliometric networks was used. Results: Bibliometric analysis of the scientific literature revealed that over the past 10 years, the number of publications about digital pills has noticeably increased, which indicates the increasing importance of this field of knowledge. The leading positions in this area are occupied by scientists from the United States, the United Kingdom, and India. Sources of financial support for authors of publications in the field of digital pills are funds from leading developer companies, budget allocations, and funds from non-commercial organizations. Public-private partnerships are an important path to develop and implement digital pills. The four main clusters of digital pill studies were highlighted and visualized: efficacy and safety analysis for serious mental disorders; treatment and costs of tuberculosis therapy; features of the treatment of diabetes, cardiovascular diseases, and AIDS; and usage monitoring. Available publications demonstrate the efficacy potential and safety of digital pills. Nevertheless, the effects of digital pills have not yet been fully studied. Conclusion: Priority areas for future research are further randomized controlled clinical trials and meta-analyses, which are necessary for a high level (I level) of evidence for therapeutic applications of digital pills, as well as pharmacoeconomic studies.
Collapse
Affiliation(s)
- Olena Litvinova
- National University of Pharmacy of the Ministry of Health of Ukraine, Kharkiv, Ukraine,*Correspondence: Olena Litvinova, ; Atanas G. Atanasov,
| | - Elisabeth Klager
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
| | - Andy Wai Kan Yeung
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria,Division of Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Nikolay T. Tzvetkov
- Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Institute of Molecular Biology “Roumen Tsanev, Sofia, Bulgaria
| | - Oliver Kimberger
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria,Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Maria Kletecka-Pulker
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria,Institute for Ethics and Law in Medicine, University of Vienna, Vienna, Austria
| | - Harald Willschke
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria,Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Atanas G. Atanasov
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria,Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, Poland,*Correspondence: Olena Litvinova, ; Atanas G. Atanasov,
| |
Collapse
|
11
|
Zhao H, Cao J, Xie J, Liao WH, Lei Y, Cao H, Qu Q, Bowen C. Wearable sensors and features for diagnosis of neurodegenerative diseases: A systematic review. Digit Health 2023; 9:20552076231173569. [PMID: 37214662 PMCID: PMC10192816 DOI: 10.1177/20552076231173569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
Objective Neurodegenerative diseases affect millions of families around the world, while various wearable sensors and corresponding data analysis can be of great support for clinical diagnosis and health assessment. This systematic review aims to provide a comprehensive overview of the existing research that uses wearable sensors and features for the diagnosis of neurodegenerative diseases. Methods A systematic review was conducted of studies published between 2015 and 2022 in major scientific databases such as Web of Science, Google Scholar, PubMed, and Scopes. The obtained studies were analyzed and organized into the process of diagnosis: wearable sensors, feature extraction, and feature selection. Results The search led to 171 eligible studies included in this overview. Wearable sensors such as force sensors, inertial sensors, electromyography, electroencephalography, acoustic sensors, optical fiber sensors, and global positioning systems were employed to monitor and diagnose neurodegenerative diseases. Various features including physical features, statistical features, nonlinear features, and features from the network can be extracted from these wearable sensors, and the alteration of features toward neurodegenerative diseases was illustrated. Moreover, different kinds of feature selection methods such as filter, wrapper, and embedded methods help to find the distinctive indicator of the diseases and benefit to a better diagnosis performance. Conclusions This systematic review enables a comprehensive understanding of wearable sensors and features for the diagnosis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Huan Zhao
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi'an, P.R. China
| | - Junyi Cao
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi'an, P.R. China
| | - Junxiao Xie
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi'an, P.R. China
| | - Wei-Hsin Liao
- Department of Mechanical and Automation
Engineering, The Chinese University of Hong
Kong, Shatin, N.T., Hong Kong, China
| | - Yaguo Lei
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi'an, P.R. China
| | - Hongmei Cao
- Department of Neurology, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an, P.R. China
| | - Qiumin Qu
- Department of Neurology, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an, P.R. China
| | - Chris Bowen
- Department of Mechanical Engineering, University of Bath, Bath, UK
| |
Collapse
|
12
|
Alzahrani KE, Assaifan AK, Al‐Gawati M, Alswieleh AM, Albrithen H, Alodhayb A. Microelectromechanical system-based biosensor for label-free detection of human cytomegalovirus. IET Nanobiotechnol 2022; 17:32-39. [PMID: 36537882 PMCID: PMC9932435 DOI: 10.1049/nbt2.12109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/27/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
The human cytomegalovirus (HCMV) is an asymptomatic common virus that is typically harmless, but in some cases, it can be life threatening. Thus, there is an urgent need to develop novel diagnostic methods and strengthen the efforts to combat this virus. A microcantilever-based biosensor functionalised with the UL83-antibody of HCMV (UL83-HCMV antibody) has been developed to detect the UL83-antigen of HCMV (UL83-HCMV antigen) at different concentrations ranging from 0.3 to 300 ng/ml. The response of the biosensor to the presence of UL83-HCMV antigen was measured through the shift in resonance frequency before and after antigen-antibody binding. The system shows a low detection limit of 84 pg/ml, which is comparable to traditional sensors, and a detection time of less than 15 min was achieved. The selectivity of the sensor was demonstrated using three different proteins with and without the UL83-HCMV antigen. The biosensor shows high selectivity for the UL83-HCMV antigen. Mass loading by the UL83-HCMV antigen was roughly estimated with a sensitivity of ∼30 fg/Hz. This technique is crucial for the fabrication of portable and low-cost biosensors that can be used in real-time monitoring and enables early medical diagnosis.
Collapse
Affiliation(s)
- Khalid E. Alzahrani
- Department of Physics and AstronomyCollege of ScienceKing Saud UniversityRiyadhSaudi Arabia,Biological and Environmental Sensing Research UnitKing Abdullah Institute for NanotechnologyKing Saud UniversityRiyadhSaudi Arabia
| | - Abdulaziz K. Assaifan
- Biological and Environmental Sensing Research UnitKing Abdullah Institute for NanotechnologyKing Saud UniversityRiyadhSaudi Arabia,Department of Biomedical TechnologyCollege of Applied Medical SciencesKing Saud UniversityRiyadhSaudi Arabia
| | - Mahmoud Al‐Gawati
- Department of Physics and AstronomyCollege of ScienceKing Saud UniversityRiyadhSaudi Arabia,Biological and Environmental Sensing Research UnitKing Abdullah Institute for NanotechnologyKing Saud UniversityRiyadhSaudi Arabia
| | - Abdullah M. Alswieleh
- Biological and Environmental Sensing Research UnitKing Abdullah Institute for NanotechnologyKing Saud UniversityRiyadhSaudi Arabia,Department of ChemistryCollege of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Hamad Albrithen
- Department of Physics and AstronomyCollege of ScienceKing Saud UniversityRiyadhSaudi Arabia,Biological and Environmental Sensing Research UnitKing Abdullah Institute for NanotechnologyKing Saud UniversityRiyadhSaudi Arabia,Research Chair for Tribology, Surface, and Interface SciencesDepartment of Physics and AstronomyCollege of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Abdullah Alodhayb
- Department of Physics and AstronomyCollege of ScienceKing Saud UniversityRiyadhSaudi Arabia,Biological and Environmental Sensing Research UnitKing Abdullah Institute for NanotechnologyKing Saud UniversityRiyadhSaudi Arabia,Research Chair for Tribology, Surface, and Interface SciencesDepartment of Physics and AstronomyCollege of ScienceKing Saud UniversityRiyadhSaudi Arabia
| |
Collapse
|
13
|
Use of Cysteamine and Glutaraldehyde Chemicals for Robust Functionalization of Substrates with Protein Biomarkers—An Overview on the Construction of Biosensors with Different Transductions. BIOSENSORS 2022; 12:bios12080581. [PMID: 36004978 PMCID: PMC9406156 DOI: 10.3390/bios12080581] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
Currently, several biosensors are reported to confirm the absence/presence of an abnormal level of specific human biomarkers in research laboratories. Unfortunately, public marketing and/or pharmacy accessibility are not yet possible for many bodily fluid biomarkers. The questions are numerous, starting from the preparation of the substrates, the wet/dry form of recognizing the (bio)ligands, the exposure time, and the choice of the running buffers. In this context, for the first time, the present overview summarizes the pre-functionalization of standard and nanostructured solid/flexible supports with cysteamine (Cys) and glutaraldehyde (GA) chemicals for robust protein immobilization and detection of biomarkers in body fluids (serum, saliva, and urine) using three transductions: piezoelectrical, electrochemical, and optical, respectively. Thus, the reader can easily access and compare step-by-step conjugate protocols published over the past 10 years. In conclusion, Cys/GA chemistry seems widely used for electrochemical sensing applications with different types of recorded signals, either current, potential, or impedance. On the other hand, piezoelectric detection via quartz crystal microbalance (QCM) and optical detection by surface plasmon resonance (LSPR)/surface-enhanced Raman spectroscopy (SERS) are ultrasensitive platforms and very good candidates for the miniaturization of medical devices in the near future.
Collapse
|