Zhang Y. MEST: An Action Recognition Network with Motion Encoder and Spatio-Temporal Module.
SENSORS (BASEL, SWITZERLAND) 2022;
22:6595. [PMID:
36081054 PMCID:
PMC9460449 DOI:
10.3390/s22176595]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
As a sub-field of video content analysis, action recognition has received extensive attention in recent years, which aims to recognize human actions in videos. Compared with a single image, video has a temporal dimension. Therefore, it is of great significance to extract the spatio-temporal information from videos for action recognition. In this paper, an efficient network to extract spatio-temporal information with relatively low computational load (dubbed MEST) is proposed. Firstly, a motion encoder to capture short-term motion cues between consecutive frames is developed, followed by a channel-wise spatio-temporal module to model long-term feature information. Moreover, the weight standardization method is applied to the convolution layers followed by batch normalization layers to expedite the training process and facilitate convergence. Experiments are conducted on five public datasets of action recognition, Something-Something-V1 and -V2, Jester, UCF101 and HMDB51, where MEST exhibits competitive performance compared to other popular methods. The results demonstrate the effectiveness of our network in terms of accuracy, computational cost and network scales.
Collapse