Liu J, Li W, Yu S, Blanchard S, Lin S. Fatigue-Resistant Mechanoresponsive Color-Changing Hydrogels for Vision-Based Tactile Robots.
ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2407925. [PMID:
39328076 DOI:
10.1002/adma.202407925]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/26/2024] [Indexed: 09/28/2024]
Abstract
Mechanoresponsive color-changing materials that can reversibly and resiliently change color in response to mechanical deformation are highly desirable for diverse modern technologies in optics, sensors, and robots; however, such materials are rarely achieved. Here, a fatigue-resistant mechanoresponsive color-changing hydrogel (FMCH) is reported that exhibits reversible, resilient, and predictable color changes under mechanical stress. At its undeformed state, the FMCH remains dark under a circular polariscope; upon uniaxial stretching of up to six times its initial length, it gradually shifts its color from black, to gray, yellow, and purple. Unlike traditional mechanoresponsive color-changing materials, FMCH maintains its performance across various strain rates for up to 10 000 cycles. Moreover, FMCH demonstrates superior mechanical properties with fracture toughness of 3000 J m-2, stretchability of 6, and fatigue threshold up to 400 J m-2. These exceptional mechanical and optical features are attributed to FMCH's substantial molecular entanglements and desirable hygroscopic salts, which synergistically enhance its mechanical toughness while preserving its color-changing performance. One application of this FMCH as a tactile sensoris then demonstrated for vision-based tactile robots, enabling them to discern material stiffness, object shape, spatial location, and applied pressure by translating stress distribution on the contact surface into discernible images.
Collapse