1
|
Tang T, Julian T, Ma D, Yang Y, Li M, Hosokawa Y, Yalikun Y. A review on intelligent impedance cytometry systems: Development, applications and advances. Anal Chim Acta 2023; 1269:341424. [PMID: 37290859 DOI: 10.1016/j.aca.2023.341424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Impedance cytometry is a well-established technique for counting and analyzing single cells, with several advantages, such as convenience, high throughput, and no labeling required. A typical experiment consists of the following steps: single-cell measurement, signal processing, data calibration, and particle subtype identification. At the beginning of this article, we compared commercial and self-developed options extensively and provided references for developing reliable detection systems, which are necessary for cell measurement. Then, a number of typical impedance metrics and their relationships to biophysical properties of cells were analyzed with respect to the impedance signal analysis. Given the rapid advances of intelligent impedance cytometry in the past decade, this article also discussed the development of representative machine learning-based approaches and systems, and their applications in data calibration and particle identification. Finally, the remaining challenges facing the field were summarized, and potential future directions for each step of impedance detection were discussed.
Collapse
Affiliation(s)
- Tao Tang
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma, Nara, 630-0192, Japan; Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Trisna Julian
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma, Nara, 630-0192, Japan
| | - Doudou Ma
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yang Yang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, 572000, PR China
| | - Ming Li
- School of Engineering, Macquarie University, Sydney, 2109, Australia
| | - Yoichiroh Hosokawa
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma, Nara, 630-0192, Japan
| | - Yaxiaer Yalikun
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma, Nara, 630-0192, Japan; Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
2
|
Troiano C, De Ninno A, Casciaro B, Riccitelli F, Park Y, Businaro L, Massoud R, Mangoni ML, Bisegna P, Stella L, Caselli F. Rapid Assessment of Susceptibility of Bacteria and Erythrocytes to Antimicrobial Peptides by Single-Cell Impedance Cytometry. ACS Sens 2023. [PMID: 37421371 PMCID: PMC10391704 DOI: 10.1021/acssensors.3c00256] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
Antimicrobial peptides (AMPs) represent a promising class of compounds to fight antibiotic-resistant infections. In most cases, they kill bacteria by making their membrane permeable and therefore exhibit low propensity to induce bacterial resistance. In addition, they are often selective, killing bacteria at concentrations lower than those at which they are toxic to the host. However, clinical applications of AMPs are hindered by a limited understanding of their interactions with bacteria and human cells. Standard susceptibility testing methods are based on the analysis of the growth of a bacterial population and therefore require several hours. Moreover, different assays are required to assess the toxicity to host cells. In this work, we propose the use of microfluidic impedance cytometry to explore the action of AMPs on both bacteria and host cells in a rapid manner and with single-cell resolution. Impedance measurements are particularly well-suited to detect the effects of AMPs on bacteria, due to the fact that the mechanism of action involves perturbation of the permeability of cell membranes. We show that the electrical signatures of Bacillus megaterium cells and human red blood cells (RBCs) reflect the action of a representative antimicrobial peptide, DNS-PMAP23. In particular, the impedance phase at high frequency (e.g., 11 or 20 MHz) is a reliable label-free metric for monitoring DNS-PMAP23 bactericidal activity and toxicity to RBCs. The impedance-based characterization is validated by comparison with standard antibacterial activity assays and absorbance-based hemolytic activity assays. Furthermore, we demonstrate the applicability of the technique to a mixed sample of B. megaterium cells and RBCs, which paves the way to study AMP selectivity for bacterial versus eukaryotic cells in the presence of both cell types.
Collapse
Affiliation(s)
- Cassandra Troiano
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Adele De Ninno
- Institute for Photonics and Nanotechnologies, Italian National Research Council, 00133 Rome, Italy
| | - Bruno Casciaro
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, 00185 Rome, Italy
| | - Francesco Riccitelli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Yoonkyung Park
- Department of Biomedical Science, College of Natural science, Chosun University, Gwangju 61452, Republic of Korea
| | - Luca Businaro
- Institute for Photonics and Nanotechnologies, Italian National Research Council, 00133 Rome, Italy
| | - Renato Massoud
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Maria Luisa Mangoni
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, 00185 Rome, Italy
| | - Paolo Bisegna
- Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Lorenzo Stella
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Federica Caselli
- Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|