Chai T, Kim D, Shin S. Efficient Internet of Things Communication System Based on Near-Field Communication and Long Range Radio.
SENSORS (BASEL, SWITZERLAND) 2025;
25:2509. [PMID:
40285199 PMCID:
PMC12031389 DOI:
10.3390/s25082509]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/01/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
Efficient communication in the Internet of Things (IoT) is essential for enabling smart applications. While NFC excels in near-field device interaction, its limited communication range hinders LoRa's long-range communication due to its low data throughput. Together with NFC and LoRa technologies, Raspberry Pi is used as a microcontroller (MCU) in this paper to look into how to make near-field and long-distance communication work better together and fix the issue of an imbalance between communication range and energy consumption in the IoT system. By optimizing the communication algorithm and parameter tuning, the power consumption of the system is significantly reduced, and the communication range and data throughput are improved. Our research gives you the technical information you need to make an IoT communication system that works well, uses little power, and has a wide coverage area. This kind of system is good for situations where you need to collect data from a close distance and keep an eye on things from afar. This makes the system more power-efficient and better at communicating, which also makes it easier for users to manage data. It is suitable for a wide range of application scenarios, such as warehousing, healthcare, agriculture, and smart cities.
Collapse