1
|
Probst D, Batchu K, Younce JR, Sode K. Levodopa: From Biological Significance to Continuous Monitoring. ACS Sens 2024; 9:3828-3839. [PMID: 39047295 PMCID: PMC11348912 DOI: 10.1021/acssensors.4c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
A continuous levodopa sensor can improve the quality of life for patients suffering with Parkinson's disease by enhancing levodopa titration and treatment effectiveness; however, its development is currently hindered by the absence of a specific levodopa molecular recognition element and limited insights into how real-time monitoring might affect clinical outcomes. This gap in research contributes to clinician uncertainty regarding the practical value of continuous levodopa monitoring data. This paper examines the current state of levodopa sensing and the inherent limitations in today's methods. Further, these challenges are described, including aspects such as interference from the metabolic pathway and adjunct medications, temporal resolution, and clinical questions, with a specific focus on a comprehensive selection of molecules, such as adjunct medications and structural isomers, as an interferent panel designed to assess and validate future levodopa sensors. We review insights and lessons from previously reported levodopa sensors and present a comparative analysis of potential molecular recognition elements, discussing their advantages and drawbacks.
Collapse
Affiliation(s)
- David Probst
- Joint
Department of Biomedical Engineering, The
University of North Carolina at Chapel Hill and North Carolina State
University, Chapel Hill, North Carolina 27599, United States
| | - Kartheek Batchu
- Joint
Department of Biomedical Engineering, The
University of North Carolina at Chapel Hill and North Carolina State
University, Chapel Hill, North Carolina 27599, United States
| | - John Robert Younce
- Department
of Neurology, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Koji Sode
- Joint
Department of Biomedical Engineering, The
University of North Carolina at Chapel Hill and North Carolina State
University, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
2
|
He X, Ji W, Xing S, Feng Z, Li H, Lu S, Du K, Li X. Emerging trends in sensors based on molecular imprinting technology: Harnessing smartphones for portable detection and recognition. Talanta 2024; 268:125283. [PMID: 37857111 DOI: 10.1016/j.talanta.2023.125283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
Molecular imprinting technology (MIT) has become a promising recognition technology in various fields due to its specificity, high efficiency, stability and eco-friendliness in the recognition of target. Molecularly imprinted polymers (MIPs), known as 'artificial receptors', are shown similar properties to natural receptors as a biomimetic material. The selectivity of recognition for targets can be greatly improved when MIPs are introduced into sensors, as known that MIPs, are suitable for the pretreatment and analysis of trace substances in complex matrix samples. At present, various sensors has been developed by the combination with MIPs for detecting and identifying trace compounds, biological macromolecules or other substances, such as optical, electrochemical and piezoelectric sensors. Smart phones, with their built-in sensors and powerful digital imaging capabilities, provide a unique platform for the needs of portability and instant detection. MIP sensors based on smart phones are expected to become a new research direction in the future. This review discusses the latest applications of MIP sensors in the field of detection and recognition in recent years, summarizes the frontier progress of MIP sensor research based on smart phones in the past two years, and points out the challenges, limitations and future development prospects.
Collapse
Affiliation(s)
- Xicheng He
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Wenliang Ji
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Sijia Xing
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Zhixuan Feng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Hongyan Li
- Tianjin JOYSTAR Technology Co., Ltd, No.453, Hengshan Road, Modern Industrial Park, Tianjin Economic Technological Development Area, Tianjin, 300457, China
| | - Shanshan Lu
- BaiyangDian Basin Ecological Environment Monitoring Center, Baoding, Hebei, 071000, China
| | - Kunze Du
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Xiaoxia Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
3
|
Ostrovidov S, Ramalingam M, Bae H, Orive G, Fujie T, Hori T, Nashimoto Y, Shi X, Kaji H. Molecularly Imprinted Polymer-Based Sensors for the Detection of Skeletal- and Cardiac-Muscle-Related Analytes. SENSORS (BASEL, SWITZERLAND) 2023; 23:5625. [PMID: 37420790 DOI: 10.3390/s23125625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 07/09/2023]
Abstract
Molecularly imprinted polymers (MIPs) are synthetic polymers with specific binding sites that present high affinity and spatial and chemical complementarities to a targeted analyte. They mimic the molecular recognition seen naturally in the antibody/antigen complementarity. Because of their specificity, MIPs can be included in sensors as a recognition element coupled to a transducer part that converts the interaction of MIP/analyte into a quantifiable signal. Such sensors have important applications in the biomedical field in diagnosis and drug discovery, and are a necessary complement of tissue engineering for analyzing the functionalities of the engineered tissues. Therefore, in this review, we provide an overview of MIP sensors that have been used for the detection of skeletal- and cardiac-muscle-related analytes. We organized this review by targeted analytes in alphabetical order. Thus, after an introduction to the fabrication of MIPs, we highlight different types of MIP sensors with an emphasis on recent works and show their great diversity, their fabrication, their linear range for a given analyte, their limit of detection (LOD), specificity, and reproducibility. We conclude the review with future developments and perspectives.
Collapse
Affiliation(s)
- Serge Ostrovidov
- Department of Diagnostic and Therapeutic Systems Engineering, Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU), Tokyo 101-0062, Japan
| | - Murugan Ramalingam
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Center, Dankook University, Cheonan 31116, Republic of Korea
- School of Basic Medical Science, Institute for Advanced Study, Affiliated Hospital of Chengdu University, Chengdu University, Chengdu 610106, China
- Department of Metallurgical and Materials Engineering, Atilim University, 06830 Ankara, Turkey
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, 78054 Villingen-Schwennigen, Germany
| | - Hojae Bae
- KU Convergence Science and Technology Institute, Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul 05029, Republic of Korea
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
| | - Toshinori Fujie
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
- Living System Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Takeshi Hori
- Department of Diagnostic and Therapeutic Systems Engineering, Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU), Tokyo 101-0062, Japan
| | - Yuji Nashimoto
- Department of Diagnostic and Therapeutic Systems Engineering, Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU), Tokyo 101-0062, Japan
| | - Xuetao Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Hirokazu Kaji
- Department of Diagnostic and Therapeutic Systems Engineering, Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU), Tokyo 101-0062, Japan
| |
Collapse
|
4
|
Karasu T, Özgür E, Uzun L. MIP-on-a-chip: Artificial receptors on microfluidic platforms for biomedical applications. J Pharm Biomed Anal 2023; 226:115257. [PMID: 36669397 DOI: 10.1016/j.jpba.2023.115257] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Lab-on-a-chip (LOC) as an alternative biosensing approach concerning cost efficiency, parallelization, ergonomics, diagnostic speed, and sensitivity integrates the techniques of various laboratory operations such as biochemical analysis, chemical synthesis, or DNA sequencing, etc. on miniaturized microfluidic single chips. Meanwhile, LOC tools based on molecularly imprinted biosensing approach permit their applications in various fields such as medical diagnostics, pharmaceuticals, etc., which are user-, and eco-friendly sensing platforms for not only alternative to the commercial competitor but also on-site detection like point-of-care measurements. In this review, we focused our attention on compiling recent pioneer studies that utilized those intriguing methodologies, the microfluidic Lab-on-a-chip and molecularly imprinting approach, and their biomedical applications.
Collapse
Affiliation(s)
- Tunca Karasu
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkiye
| | - Erdoğan Özgür
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkiye
| | - Lokman Uzun
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkiye.
| |
Collapse
|