1
|
Zienkiewicz A, Korhonen V, Kiviniemi V, Myllylä T. Continuous Estimation of Blood Pressure by Utilizing Seismocardiogram Signal Features in Relation to Electrocardiogram. BIOSENSORS 2024; 14:621. [PMID: 39727886 DOI: 10.3390/bios14120621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
There is an ongoing search for a reliable and continuous method of noninvasive blood pressure (BP) tracking. In this study, we investigate the feasibility of utilizing seismocardiogram (SCG) signals, i.e., chest motion caused by cardiac activity, for this purpose. This research is novel in examining the temporal relationship between the SCG-measured isovolumic moment and the electrocardiogram (PEPIM). Additionally, we compare these results with the traditionally measured pre-ejection period with the aortic opening marked as an endpoint (PEPAO). The accuracy of the BP estimation was evaluated beat to beat against invasively measured arterial BP. Data were collected on separate days as eighteen sets from nine subjects undergoing a medical procedure with anesthesia. Results for PEPIM showed a correlation of 0.67 ± 0.18 (p < 0.001), 0.66 ± 0.17 (p < 0.001), and 0.67 ± 0.17 (p < 0.001) when compared to systolic BP, diastolic BP, and mean arterial pressure (MAP), respectively. Corresponding results for PEPAO were equal to 0.61 ± 0.22 (p < 0.001), 0.61 ± 0.21 (p < 0.001), and 0.62 ± 0.22 (p < 0.001). Values of PEPIM were used to estimate MAP using two first-degree models, the linear regression model (achieved RMSE of 11.7 ± 4.0 mmHg) and extended model with HR (RMSE of 10.8 ± 4.2 mmHg), and two corresponding second-degree models (RMSE of 10.8 ± 3.7 mmHg and RMSE of 8.5 ± 3.4 mmHg for second-degree polynomial and second-degree extended, respectively). In the intrasubject testing of the second-degree model extended with HR based on PEPIM values, the mean error of MAP estimation in three follow-up measurements was in the range of 7.5 to 10.5 mmHg, without recalibration. This study demonstrates the method's potential for further research, particularly given that both proximal and distal pulses are measured in close proximity to the heart and cardiac output. This positioning may enhance the method's capacity to more accurately reflect central blood pressure compared to peripheral measurements.
Collapse
Affiliation(s)
- Aleksandra Zienkiewicz
- Optoelectronics and Measurement Techniques Research Unit, University of Oulu, 90570 Oulu, Finland
| | - Vesa Korhonen
- Oulu Functional Neuroimaging, Department of Diagnostic Radiology, Oulu University Hospital, 90220 Oulu, Finland
- Research Unit of Health Sciences and Technology, University of Oulu, 90220 Oulu, Finland
| | - Vesa Kiviniemi
- Oulu Functional Neuroimaging, Department of Diagnostic Radiology, Oulu University Hospital, 90220 Oulu, Finland
- Research Unit of Health Sciences and Technology, University of Oulu, 90220 Oulu, Finland
| | - Teemu Myllylä
- Optoelectronics and Measurement Techniques Research Unit, University of Oulu, 90570 Oulu, Finland
- Research Unit of Health Sciences and Technology, University of Oulu, 90220 Oulu, Finland
| |
Collapse
|
2
|
Albrecht UV, Mielitz A, Rahman KMA, Kulau U. Identifying Gravity-Related Artifacts on Ballistocardiography Signals by Comparing Weightlessness and Normal Gravity Recordings (ARTIFACTS): Protocol for an Observational Study. JMIR Res Protoc 2024; 13:e63306. [PMID: 39326041 PMCID: PMC11467602 DOI: 10.2196/63306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Modern ballistocardiography (BCG) and seismocardiography (SCG) use acceleration sensors to measure oscillating recoil movements of the body caused by the heartbeat and blood flow, which are transmitted to the body surface. Acceleration artifacts occur through intrinsic sensor roll, pitch, and yaw movements, assessed by the angular velocities of the respective sensor, during measurements that bias the signal interpretation. OBJECTIVE This observational study aims to generate hypotheses on the detection and elimination of acceleration artifacts due to the intrinsic rotation of accelerometers and their differentiation from heart-induced sensor accelerations. METHODS Multimodal data from 4 healthy participants (3 male and 1 female) using BCG-SCG and an electrocardiogram will be collected and serve as a basis for signal characterization, model modulation, and location vector derivation under parabolic flight conditions from µg to 1.8g. The data will be obtained during a parabolic flight campaign (3 times 30 parabolas) between September 24 and July 25 (depending on the flight schedule). To detect the described acceleration artifacts, accelerometers and gyroscopes (6-degree-of-freedom sensors) will be used for measuring acceleration and angular velocities attributed to intrinsic sensor rotation. Changes in acceleration and angular velocities will be explored by conducting descriptive data analysis of resting participants sitting upright in varying gravitational states. RESULTS A multimodal data set will serve as a basis for research into a noninvasive and gentle method of BCG-SCG with the aid of low-noise and synchronous 3D gyroscopes and 3D acceleration sensors. Hypotheses will be generated related to detecting and eliminating acceleration artifacts due to the intrinsic rotation of accelerometers and gyroscopes (6-degree-of-freedom sensors) and their differentiation from heart-induced sensor accelerations. Data will be collected entirely and exclusively during the parabolic flights, taking place between September 2024 and July 2025. Thus, as of June 2024, no data have been collected yet. The data will be analyzed until December 2025. The results are expected to be published by June 2026. CONCLUSIONS The study will contribute to understanding artificial acceleration bias to signal readings. It will be a first approach for a detection and elimination method. TRIAL REGISTRATION Deutsches Register Klinische Studien DRKS00034402; https://drks.de/search/en/trial/DRKS00034402. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) PRR1-10.2196/63306.
Collapse
Affiliation(s)
- Urs-Vito Albrecht
- Department of Digital Medicine, Bielefeld University, Bielefeld, Germany
| | - Annabelle Mielitz
- Department of Digital Medicine, Bielefeld University, Bielefeld, Germany
| | | | - Ulf Kulau
- Smart Sensors Group, Hamburg Technical University, Hamburg, Germany
| |
Collapse
|
3
|
Aydemir U, Mousa AH, Dicko C, Strakosas X, Shameem MA, Hellman K, Yadav AS, Ekström P, Hughes D, Ek F, Berggren M, Arner A, Hjort M, Olsson R. In situ assembly of an injectable cardiac stimulator. Nat Commun 2024; 15:6774. [PMID: 39117721 PMCID: PMC11310494 DOI: 10.1038/s41467-024-51111-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Without intervention, cardiac arrhythmias pose a risk of fatality. However, timely intervention can be challenging in environments where transporting a large, heavy defibrillator is impractical, or emergency surgery to implant cardiac stimulation devices is not feasible. Here, we introduce an injectable cardiac stimulator, a syringe loaded with a nanoparticle solution comprising a conductive polymer and a monomer that, upon injection, forms a conductive structure around the heart for cardiac stimulation. Following treatment, the electrode is cleared from the body, eliminating the need for surgical extraction. The mixture adheres to the beating heart in vivo without disrupting its normal rhythm. The electrofunctionalized injectable cardiac stimulator demonstrates a tissue-compatible Young's modulus of 21 kPa and a high conductivity of 55 S/cm. The injected electrode facilitates electrocardiogram measurements, regulates heartbeat in vivo, and rectifies arrhythmia. Conductive functionality is maintained for five consecutive days, and no toxicity is observed at the organism, organ, or cellular levels.
Collapse
Affiliation(s)
- Umut Aydemir
- Chemical Biology & Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Abdelrazek H Mousa
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Cedric Dicko
- Pure and Applied Biochemistry, Department of Chemistry, Lund University, Lund, Sweden
| | - Xenofon Strakosas
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Muhammad Anwar Shameem
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Karin Hellman
- Chemical Biology & Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Amit Singh Yadav
- Chemical Biology & Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Peter Ekström
- Chemical Biology & Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Damien Hughes
- Chemical Biology & Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Fredrik Ek
- Chemical Biology & Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Anders Arner
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Martin Hjort
- Chemical Biology & Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Roger Olsson
- Chemical Biology & Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden.
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
4
|
Armoundas AA, Ahmad FS, Bennett DA, Chung MK, Davis LL, Dunn J, Narayan SM, Slotwiner DJ, Wiley KK, Khera R. Data Interoperability for Ambulatory Monitoring of Cardiovascular Disease: A Scientific Statement From the American Heart Association. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e000095. [PMID: 38779844 DOI: 10.1161/hcg.0000000000000095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Wearable devices are increasingly used by a growing portion of the population to track health and illnesses. The data emerging from these devices can potentially transform health care. This requires an interoperability framework that enables the deployment of platforms, sensors, devices, and software applications within diverse health systems, aiming to facilitate innovation in preventing and treating cardiovascular disease. However, the current data ecosystem includes several noninteroperable systems that inhibit such objectives. The design of clinically meaningful systems for accessing and incorporating these data into clinical workflows requires strategies to ensure the quality of data and clinical content and patient and caregiver accessibility. This scientific statement aims to address the best practices, gaps, and challenges pertaining to data interoperability in this area, with considerations for (1) data integration and the scope of measures, (2) application of these data into clinical approaches/strategies, and (3) regulatory/ethical/legal issues.
Collapse
|
5
|
Hossein A, Abdessater E, Balali P, Cosneau E, Gorlier D, Rabineau J, Almorad A, Faoro V, van de Borne P. Smartphone-Derived Seismocardiography: Robust Approach for Accurate Cardiac Energy Assessment in Patients with Various Cardiovascular Conditions. SENSORS (BASEL, SWITZERLAND) 2024; 24:2139. [PMID: 38610349 PMCID: PMC11014030 DOI: 10.3390/s24072139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024]
Abstract
Seismocardiography (SCG), a method for measuring heart-induced chest vibrations, is gaining attention as a non-invasive, accessible, and cost-effective approach for cardiac pathologies, diagnosis, and monitoring. This study explores the integration of SCG acquired through smartphone technology by assessing the accuracy of metrics derived from smartphone recordings and their consistency when performed by patients. Therefore, we assessed smartphone-derived SCG's reliability in computing median kinetic energy parameters per record in 220 patients with various cardiovascular conditions. The study involved three key procedures: (1) simultaneous measurements of a validated hardware device and a commercial smartphone; (2) consecutive smartphone recordings performed by both clinicians and patients; (3) patients' self-conducted home recordings over three months. Our findings indicate a moderate-to-high reliability of smartphone-acquired SCG metrics compared to those obtained from a validated device, with intraclass correlation (ICC) > 0.77. The reliability of patient-acquired SCG metrics was high (ICC > 0.83). Within the cohort, 138 patients had smartphones that met the compatibility criteria for the study, with an observed at-home compliance rate of 41.4%. This research validates the potential of smartphone-derived SCG acquisition in providing repeatable SCG metrics in telemedicine, thus laying a foundation for future studies to enhance the precision of at-home cardiac data acquisition.
Collapse
Affiliation(s)
- Amin Hossein
- Laboratory of Physics and Physiology, Université Libre de Bruxelles, 1050 Brussels, Belgium
- Cardio-Pulmonary Exercise Laboratory, Faculty of Motor Sciences, Université Libre de Bruxelles, Erasme Campus, Anderlecht, 1070 Brussels, Belgium
| | - Elza Abdessater
- Department of Cardiology, Erasme Hospital, Université Libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Paniz Balali
- Laboratory of Physics and Physiology, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | | | | | - Jérémy Rabineau
- Laboratory of Physics and Physiology, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Alexandre Almorad
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, 1050 Brussels, Belgium
| | - Vitalie Faoro
- Cardio-Pulmonary Exercise Laboratory, Faculty of Motor Sciences, Université Libre de Bruxelles, Erasme Campus, Anderlecht, 1070 Brussels, Belgium
| | - Philippe van de Borne
- Department of Cardiology, Erasme Hospital, Université Libre de Bruxelles, 1050 Bruxelles, Belgium
| |
Collapse
|
6
|
Zavanelli N, Lee SH, Guess M, Yeo WH. Continuous real-time assessment of acute cognitive stress from cardiac mechanical signals captured by a skin-like patch. Biosens Bioelectron 2024; 248:115983. [PMID: 38163399 DOI: 10.1016/j.bios.2023.115983] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
The inability to objectively quantify cognitive stress in real-time with wearable devices is a crucial unsolved problem with serious negative consequences for dementia and mental disability patients and those seeking to improve their quality of life. Here, we introduce a skin-like, wireless sternal patch that captures changes in cardiac mechanics due to stress manifesting in the seismocardiogram (SCG) signals. Judicious optimization of the device's micro-structured interconnections and elastomer integration yields a device that sufficiently matches the skin's mechanics, robustly yet gently adheres to the skin without aggressive tapes, and captures planar and longitudinal SCG waves well. The device transmits SCG beats in real-time to a user's device, where derived features relate to the heartbeat's mechanical morphology. The signals are assessed by a series of features in a support vector machine regressor. Controlled studies, compared to gold standard cortisol and following the validated imaging test, show an R-squared correlation of 0.79 between the stress prediction and cortisol change, significantly improving over prior works. Likewise, the system demonstrates excellent robustness to external temperature and physical recovery status while showing excellent accuracy and wearability in full-day use.
Collapse
Affiliation(s)
- Nathan Zavanelli
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30024, USA; IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Sung Hoon Lee
- IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA; School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Matthew Guess
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30024, USA; IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30024, USA; IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University School of Medicine, Atlanta, GA, 30332, USA; Parker H. Petit Institute for Bioengineering and Biosciences, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
7
|
Vitazkova D, Foltan E, Kosnacova H, Micjan M, Donoval M, Kuzma A, Kopani M, Vavrinsky E. Advances in Respiratory Monitoring: A Comprehensive Review of Wearable and Remote Technologies. BIOSENSORS 2024; 14:90. [PMID: 38392009 PMCID: PMC10886711 DOI: 10.3390/bios14020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/28/2024] [Accepted: 02/03/2024] [Indexed: 02/24/2024]
Abstract
This article explores the importance of wearable and remote technologies in healthcare. The focus highlights its potential in continuous monitoring, examines the specificity of the issue, and offers a view of proactive healthcare. Our research describes a wide range of device types and scientific methodologies, starting from traditional chest belts to their modern alternatives and cutting-edge bioamplifiers that distinguish breathing from chest impedance variations. We also investigated innovative technologies such as the monitoring of thorax micromovements based on the principles of seismocardiography, ballistocardiography, remote camera recordings, deployment of integrated optical fibers, or extraction of respiration from cardiovascular variables. Our review is extended to include acoustic methods and breath and blood gas analysis, providing a comprehensive overview of different approaches to respiratory monitoring. The topic of monitoring respiration with wearable and remote electronics is currently the center of attention of researchers, which is also reflected by the growing number of publications. In our manuscript, we offer an overview of the most interesting ones.
Collapse
Affiliation(s)
- Diana Vitazkova
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (E.F.); (H.K.); (M.M.); (M.D.); (A.K.)
| | - Erik Foltan
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (E.F.); (H.K.); (M.M.); (M.D.); (A.K.)
| | - Helena Kosnacova
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (E.F.); (H.K.); (M.M.); (M.D.); (A.K.)
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, Sasinkova 4, 81272 Bratislava, Slovakia
| | - Michal Micjan
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (E.F.); (H.K.); (M.M.); (M.D.); (A.K.)
| | - Martin Donoval
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (E.F.); (H.K.); (M.M.); (M.D.); (A.K.)
| | - Anton Kuzma
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (E.F.); (H.K.); (M.M.); (M.D.); (A.K.)
| | - Martin Kopani
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Sasinkova 2, 81272 Bratislava, Slovakia;
| | - Erik Vavrinsky
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (E.F.); (H.K.); (M.M.); (M.D.); (A.K.)
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Sasinkova 2, 81272 Bratislava, Slovakia;
| |
Collapse
|
8
|
Kumaki D, Motoshima Y, Higuchi F, Sato K, Sekine T, Tokito S. Unobstructive Heartbeat Monitoring of Sleeping Infants and Young Children Using Sheet-Type PVDF Sensors. SENSORS (BASEL, SWITZERLAND) 2023; 23:9252. [PMID: 38005638 PMCID: PMC10674719 DOI: 10.3390/s23229252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Techniques for noninvasively acquiring the vital information of infants and young children are considered very useful in the fields of healthcare and medical care. An unobstructive measurement method for sleeping infants and young children under the age of 6 years using a sheet-type vital sensor with a polyvinylidene fluoride (PVDF) pressure-sensitive layer is demonstrated. The signal filter conditions to obtain the ballistocardiogram (BCG) and phonocardiogram (PCG) are discussed from the waveform data of infants and young children. The difference in signal processing conditions was caused by the physique of the infants and young children. The peak-to-peak interval (PPI) extracted from the BCG or PCG during sleep showed an extremely high correlation with the R-to-R interval (RRI) extracted from the electrocardiogram (ECG). The vital changes until awakening in infants monitored using a sheet sensor were also investigated. In infants under one year of age that awakened spontaneously, the distinctive vital changes during awakening were observed. Understanding the changes in the heartbeat and respiration signs of infants and young children during sleep is essential for improving the accuracy of abnormality detection by unobstructive sensors.
Collapse
Affiliation(s)
- Daisuke Kumaki
- Research Center for Organic Electronics, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Yamagata, Japan (T.S.); (S.T.)
| | - Yuko Motoshima
- Faculty of Education, Art and Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata City 990-8560, Yamagata, Japan;
| | - Fujio Higuchi
- Research Center for Organic Electronics, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Yamagata, Japan (T.S.); (S.T.)
| | - Katsuhiro Sato
- Research Center for Organic Electronics, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Yamagata, Japan (T.S.); (S.T.)
| | - Tomohito Sekine
- Research Center for Organic Electronics, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Yamagata, Japan (T.S.); (S.T.)
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Yamagata, Japan
| | - Shizuo Tokito
- Research Center for Organic Electronics, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Yamagata, Japan (T.S.); (S.T.)
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Yamagata, Japan
| |
Collapse
|
9
|
De Keyzer E, Hossein A, Rabineau J, Morissens M, Almorad A, van de Borne P. Non-invasive cardiac kinetic energy distribution: a new marker of heart failure with impaired ejection fraction (KINO-HF). Front Cardiovasc Med 2023; 10:1096859. [PMID: 37200972 PMCID: PMC10185762 DOI: 10.3389/fcvm.2023.1096859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/10/2023] [Indexed: 05/20/2023] Open
Abstract
Background Heart failure (HF) remains a major cause of mortality, morbidity, and poor quality of life. 44% of HF patients present impaired left ventricular ejection fraction (LVEF). Kinocardiography (KCG) technology combines ballistocardiography (BCG) and seismocardiography (SCG). It estimates myocardial contraction and blood flow through the cardiac chambers and major vessels through a wearable device. Kino-HF sought to evaluate the potential of KCG to distinguish HF patients with impaired LVEF from a control group. Methods Successive patients with HF and impaired LVEF (iLVEF group) were matched and compared to patients with normal LVEF ≥ 50% (control). A 60 s KCG acquisition followed cardiac ultrasound. The kinetic energy from KCG signals was computed in different phases of the cardiac cycle (i K s y s t o l i c ; Δ i K d i a s t o l i c ) as markers of cardiac mechanical function. Results Thirty HF patients (67 [59; 71] years, 87% male) were matched with 30 controls (64.5 [49; 73] years, 87% male). SCG Δ i K d i a s t o l i c , BCG i K s y s t o l i c , BCG Δ i K d i a s t o l i c were lower in HF than controls (p < 0.05), while SCG i K s y s t o l i c was similar. Furthermore, a lower SCG i K s y s t o l i c was associated with an increased mortality risk during follow-up. Conclusions KINO-HF demonstrates that KCG can distinguish HF patients with impaired systolic function from a control group. These favorable results warrant further research on the diagnostic and prognostic capabilities of KCG in HF with impaired LVEF.Clinical Trial Registration: NCT03157115.
Collapse
Affiliation(s)
- Eva De Keyzer
- Department of Cardiology, Brugmann Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Amin Hossein
- Laboratoray of Physics and Physiology, Université Libre de Bruxelles, Brussels, Belgium
| | - Jeremy Rabineau
- Laboratoray of Physics and Physiology, Université Libre de Bruxelles, Brussels, Belgium
| | - Marielle Morissens
- Department of Cardiology, Brugmann Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Alexandre Almorad
- Department of Cardiology, Brugmann Hospital, Université Libre de Bruxelles, Brussels, Belgium
- Heart Rhythm Management Centre, European Reference Networks Guard-Heart, Universitair Ziekenhuis Brussel - Vrije Universiteit Brussel, Brussels, Belgium
| | - Philippe van de Borne
- Department of Cardiology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|