Nitta Y, Ueda Y, Ohira S, Isono M, Hirose A, Inui S, Murata S, Minami H, Sagawa T, Nagayasu Y, Miyazaki M, Konishi K. Feasibility of a portable respiratory training system with a gyroscope sensor.
Br J Radiol 2024;
97:1162-1168. [PMID:
38648776 PMCID:
PMC11135790 DOI:
10.1093/bjr/tqae085]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/10/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
OBJECTIVES
A portable respiratory training system with a gyroscope sensor (gyroscope respiratory training system [GRTS]) was developed and the feasibility of respiratory training was evaluated.
METHODS
Simulated respiratory waveforms from a respiratory motion phantom and actual respirator waveforms from volunteers were acquired using the GRTS and Respiratory Gating for Scanners system (RGSC). Respiratory training was evaluated by comparing the stability and reproducibility of respiratory waveforms from patients undergoing expiratory breath-hold radiation therapy, with and without the GRTS. The stability and reproducibility of respiratory waveforms were assessed by root mean square error and gold marker placement-based success rate of expiratory breath-hold, respectively.
RESULTS
The absolute mean difference for sinusoidal waveforms between the GRTS and RGSC was 2.0%. Among volunteers, the mean percentages of errors within ±15% of the respiratory waveforms acquired by the GRTS and RGSC were 96.1% for free breathing and 88.2% for expiratory breath-hold. The mean root mean square error and success rate of expiratory breath-hold (standard deviation) with and without the GRTS were 0.65 (0.24) and 0.88 (0.89) cm and 91.0% (6.9) and 89.1% (11.6), respectively.
CONCLUSIONS
Respiratory waveforms acquired by the GRTS exhibit good agreement with waveforms acquired by the RGSC. Respiratory training with the GRTS reduces inter-patient variability in respiratory waveforms, thereby improving the success of expiratory breath-hold radiation therapy.
ADVANCES IN KNOWLEDGE
A respiratory training system with a gyroscope sensor is inexpensive and portable, making it ideal for respiratory training. This is the first report concerning clinical implementation of a respiratory training system.
Collapse