1
|
Wang W, Meng Z, Wang C, Gui J. Isotopic and Geophysical Investigations of Groundwater in Laiyuan Basin, China. SENSORS (BASEL, SWITZERLAND) 2024; 24:7001. [PMID: 39517900 PMCID: PMC11548448 DOI: 10.3390/s24217001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/27/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Due to the complex intersection and control of multiple structural systems, the hydrogeological conditions of the Laiyuan Basin in China are complex. The depth of research on the relationship between geological structure and groundwater migration needs to be improved. The supply relationship of each aquifer is still uncertain. This paper systematically conducts research on the characteristics of hydrogen and oxygen isotopes, and combines magnetotelluric impedance tensor decomposition and two-dimensional fine inversion technology to carry out fine exploration of the strata and structures in the Laiyuan Basin, as well as comprehensive characteristics of groundwater migration and replenishment. The results indicate the following: (i) The hydrogen and oxygen values all fall near the local meteoric water line, indicating that precipitation is the main groundwater recharge source. (ii) The excess deuterium decreased gradually from karst mountain to basin, and karst water and pore water experienced different flow processes. (iii) The structure characteristics of three main runoff channels are described by MT fine processing and inversion techniques. Finally, it is concluded that limestone water moved from the recharge to the discharge area, mixed with the deep dolomite water along the fault under the control of fault F2, and eventually rose to the surface of the unconsolidated sediment blocked by fault F1 to emerge into an ascending spring.
Collapse
Affiliation(s)
- Weiqiang Wang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China;
- Key Laboratory of Groundwater Sciences and Engineering, Ministry of Natural Resources, Shijiazhuang 050061, China
| | - Zilong Meng
- Hebei Institute of Hydrological Engineering Geology Exploration, Shijiazhuang 050021, China; (Z.M.); (C.W.)
| | - Chenglong Wang
- Hebei Institute of Hydrological Engineering Geology Exploration, Shijiazhuang 050021, China; (Z.M.); (C.W.)
| | - Jianye Gui
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China;
- Key Laboratory of Groundwater Sciences and Engineering, Ministry of Natural Resources, Shijiazhuang 050061, China
| |
Collapse
|
2
|
Singh RK, Nayak NP, Behl T, Arora R, Anwer MK, Gulati M, Bungau SG, Brisc MC. Exploring the Intersection of Geophysics and Diagnostic Imaging in the Health Sciences. Diagnostics (Basel) 2024; 14:139. [PMID: 38248016 PMCID: PMC11154438 DOI: 10.3390/diagnostics14020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
To develop diagnostic imaging approaches, this paper emphasizes the transformational potential of merging geophysics with health sciences. Diagnostic imaging technology improvements have transformed the health sciences by enabling earlier and more precise disease identification, individualized therapy, and improved patient care. This review article examines the connection between geophysics and diagnostic imaging in the field of health sciences. Geophysics, which is typically used to explore Earth's subsurface, has provided new uses of its methodology in the medical field, providing innovative solutions to pressing medical problems. The article examines the different geophysical techniques like electrical imaging, seismic imaging, and geophysics and their corresponding imaging techniques used in health sciences like tomography, magnetic resonance imaging, ultrasound imaging, etc. The examination includes the description, similarities, differences, and challenges associated with these techniques and how modified geophysical techniques can be used in imaging methods in health sciences. Examining the progression of each method from geophysics to medical imaging and its contributions to illness diagnosis, treatment planning, and monitoring are highlighted. Also, the utilization of geophysical data analysis techniques like signal processing and inversion techniques in image processing in health sciences has been briefly explained, along with different mathematical and computational tools in geophysics and how they can be implemented for image processing in health sciences. The key findings include the development of machine learning and artificial intelligence in geophysics-driven medical imaging, demonstrating the revolutionary effects of data-driven methods on precision, speed, and predictive modeling.
Collapse
Affiliation(s)
- Rahul Kumar Singh
- Energy Cluster, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India; (R.K.S.); (N.P.N.)
| | - Nirlipta Priyadarshini Nayak
- Energy Cluster, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India; (R.K.S.); (N.P.N.)
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali 140306, Punjab, India
| | - Rashmi Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India;
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia;
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 1444411, Punjab, India;
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Mihaela Cristina Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| |
Collapse
|
3
|
Novella I, Rupaedah B, Eddy DR, Suryana, Irwansyah FS, Noviyanti AR. The Influence of Polyvinyl Alcohol Porogen Addition on the Nanostructural Characteristics of Hydroxyapatite. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6313. [PMID: 37763589 PMCID: PMC10532944 DOI: 10.3390/ma16186313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Hydroxyapatite (HA) is a porous material widely developed in various research fields because of its high biodegradability, biocompatibility, and low toxicity. In this research, HA was synthesized using a hydrothermal method with chicken eggshells as a calcium source and various concentrations of polyvinyl alcohol as a porogen (2.5%, 5.0%, and 7.5% by wt). The structure and morphology of HA were determined by X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. HA was obtained with varying concentrations of polyvinyl alcohol (PVA) porogen according to Inorganic Crystal Structure Database (ICSD) standard. Based on analysis using a refinement method, changes in unit cell parameters (cell volume and lattice strain) of HA synthesized using PVA porogen compared to the standard, the chi square (χ2) and index of R values were relatively low, validating the acceptable of the data. In addition, HA [Ca10(PO4)6(OH)2] with hexagonal structure and the P63/m space group was successfully obtained. Morphological analysis of HA by SEM found that HA has a spherical shape, and the porosity of HA increases with increasing concentrations of polyvinyl alcohol. The highest porosity was obtained with an addition of 5.0 wt% of PVA porogen (HAP3), reaching 69.53%.
Collapse
Affiliation(s)
- Indrika Novella
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (I.N.); (D.R.E.); (F.S.I.)
| | - Bedah Rupaedah
- Research Center for Applied Microbiology, National Research and Innovation Agency, Jl. Raya Jakarta-Bogor Km. 46, Bogor 16911, Indonesia;
| | - Diana Rakhmawaty Eddy
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (I.N.); (D.R.E.); (F.S.I.)
| | - Suryana
- Department of Biology, Faculty of Mathematics and Natural Sciences, Padjajaran University, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia;
| | - Ferli Septi Irwansyah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (I.N.); (D.R.E.); (F.S.I.)
- Department of Chemistry Education, UIN Sunan Gunung Djati, Bandung Jl. A.H. Nasution No. 105, Bandung 40614, Indonesia
| | - Atiek Rostika Noviyanti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (I.N.); (D.R.E.); (F.S.I.)
| |
Collapse
|