Amprimo G, Masi G, Olmo G, Ferraris C. Deep Learning for hand tracking in Parkinson's Disease video-based assessment: Current and future perspectives.
Artif Intell Med 2024;
154:102914. [PMID:
38909431 DOI:
10.1016/j.artmed.2024.102914]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND
Parkinson's Disease (PD) demands early diagnosis and frequent assessment of symptoms. In particular, analysing hand movements is pivotal to understand disease progression. Advancements in hand tracking using Deep Learning (DL) allow for the automatic and objective disease evaluation from video recordings of standardised motor tasks, which are the foundation of neurological examinations. In view of this scenario, this narrative review aims to describe the state of the art and the future perspective of DL frameworks for hand tracking in video-based PD assessment.
METHODS
A rigorous search of PubMed, Web of Science, IEEE Explorer, and Scopus until October 2023 using primary keywords such as parkinson, hand tracking, and deep learning was performed to select eligible by focusing on video-based PD assessment through DL-driven hand tracking frameworks RESULTS:: After accurate screening, 23 publications met the selection criteria. These studies used various solutions, from well-established pose estimation frameworks, like OpenPose and MediaPipe, to custom deep architectures designed to accurately track hand and finger movements and extract relevant disease features. Estimated hand tracking data were then used to differentiate PD patients from healthy individuals, characterise symptoms such as tremors and bradykinesia, or regress the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) by automatically assessing clinical tasks such as finger tapping, hand movements, and pronation-supination.
CONCLUSIONS
DL-driven hand tracking holds promise for PD assessment, offering precise, objective measurements for early diagnosis and monitoring, especially in a telemedicine scenario. However, to ensure clinical acceptance, standardisation and validation are crucial. Future research should prioritise large open datasets, rigorous validation on patients, and the investigation of new frontiers such as tracking hand-hand and hand-object interactions for daily-life tasks assessment.
Collapse