1
|
Kaur G, Bisen S, Singh NK. Nanotechnology in retinal diseases: From disease diagnosis to therapeutic applications. BIOPHYSICS REVIEWS 2024; 5:041305. [PMID: 39512331 PMCID: PMC11540445 DOI: 10.1063/5.0214899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024]
Abstract
Nanotechnology has demonstrated tremendous promise in the realm of ocular illnesses, with applications for disease detection and therapeutic interventions. The nanoscale features of nanoparticles enable their precise interactions with retinal tissues, allowing for more efficient and effective treatments. Because biological organs are compatible with diverse nanomaterials, such as nanoparticles, nanowires, nanoscaffolds, and hybrid nanostructures, their usage in biomedical applications, particularly in retinal illnesses, has increased. The use of nanotechnology in medicine is advancing rapidly, and recent advances in nanomedicine-based diagnosis and therapy techniques may provide considerable benefits in addressing the primary causes of blindness related to retinal illnesses. The current state, prospects, and challenges of nanotechnology in monitoring nanostructures or cells in the eye and their application to regenerative ophthalmology have been discussed and thoroughly reviewed. In this review, we build on our previously published review article in 2021, where we discussed the impact of nano-biomaterials in retinal regeneration. However, in this review, we extended our focus to incorporate and discuss the application of nano-biomaterials on all retinal diseases, with a highlight on nanomedicine-based diagnostic and therapeutic research studies.
Collapse
|
2
|
Leong A, Li Y, Ruikes TR, Voillot J, Yuan Y, Chen G, Facon A, Chhuon CA, Joffrois C, Tessier G, Cornebois M, Dégardin J, Louise JD, Cheng JX, Yang C, Moulet H, Picaud S. A flexible high-precision photoacoustic retinal prosthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611068. [PMID: 39282448 PMCID: PMC11398364 DOI: 10.1101/2024.09.03.611068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Retinal degenerative diseases of photoreceptors are a leading cause of blindness with no effective treatment. Retinal prostheses aim to restore sight by stimulating remaining retinal cells. Here, we present a photoacoustic retinal stimulation technology. We designed a polydimethylsiloxane and carbon-based flexible film that converts near-infrared laser pulses into a localized acoustic field with 56-μm lateral resolution, aiming at high-precision acoustic stimulation of mechanosensitive retinal cells. This photoacoustic stimulation resulted in robust and localized modulation of retinal ganglion cell activity in both wild-type and degenerated ex vivo retinae. When a millimeter-sized photoacoustic film was implanted in the rat subretinal space, pulsed laser stimulation generated neural modulation in vivo along the visual pathway to the superior colliculus, as measured by functional ultrasound imaging. The biosafety of the film was confirmed by the absence of short-term adverse effects under optical coherence tomography retinal imaging, while local thermal increases were measured below 1 °C. These findings demonstrate the potential of photoacoustic stimulation for high-acuity visual restoration over a large field of view in blind patients.
Collapse
|
3
|
Holiel HA, Fawzi SA, Al-Atabany W. Pre-processing visual scenes for retinal prosthesis systems: A comprehensive review. Artif Organs 2024; 48:1223-1250. [PMID: 39023279 DOI: 10.1111/aor.14824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/13/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Retinal prostheses offer hope for individuals with degenerative retinal diseases by stimulating the remaining retinal cells to partially restore their vision. This review delves into the current advancements in retinal prosthesis technology, with a special emphasis on the pivotal role that image processing and machine learning techniques play in this evolution. METHODS We provide a comprehensive analysis of the existing implantable devices and optogenetic strategies, delineating their advantages, limitations, and challenges in addressing complex visual tasks. The review extends to various image processing algorithms and deep learning architectures that have been implemented to enhance the functionality of retinal prosthetic devices. We also illustrate the testing results by demonstrating the clinical trials or using Simulated Prosthetic Vision (SPV) through phosphene simulations, which is a critical aspect of simulating visual perception for retinal prosthesis users. RESULTS Our review highlights the significant progress in retinal prosthesis technology, particularly its capacity to augment visual perception among the visually impaired. It discusses the integration between image processing and deep learning, illustrating their impact on individual interactions and navigations within the environment through applying clinical trials and also illustrating the limitations of some techniques to be used with current devices, as some approaches only use simulation even on sighted-normal individuals or rely on qualitative analysis, where some consider realistic perception models and others do not. CONCLUSION This interdisciplinary field holds promise for the future of retinal prostheses, with the potential to significantly enhance the quality of life for individuals with retinal prostheses. Future research directions should pivot towards optimizing phosphene simulations for SPV approaches, considering the distorted and confusing nature of phosphene perception, thereby enriching the visual perception provided by these prosthetic devices. This endeavor will not only improve navigational independence but also facilitate a more immersive interaction with the environment.
Collapse
Affiliation(s)
- Heidi Ahmed Holiel
- Medical Imaging and Image Processing Research Group, Center for Informatics Science, Nile University, Sheikh Zayed City, Egypt
| | - Sahar Ali Fawzi
- Medical Imaging and Image Processing Research Group, Center for Informatics Science, Nile University, Sheikh Zayed City, Egypt
- Systems and Biomedical Engineering Department, Cairo University, Giza, Egypt
| | - Walid Al-Atabany
- Medical Imaging and Image Processing Research Group, Center for Informatics Science, Nile University, Sheikh Zayed City, Egypt
- Biomedical Engineering Department, Helwan University, Helwan, Egypt
| |
Collapse
|
4
|
Shanbhag NM, Bin Sumaida A, Al Shamisi K, Balaraj K. Apple Vision Pro: A Paradigm Shift in Medical Technology. Cureus 2024; 16:e69608. [PMID: 39308843 PMCID: PMC11413724 DOI: 10.7759/cureus.69608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024] Open
Abstract
The introduction of Apple Vision Pro (AVP) marks a significant milestone in the intersection of technology and healthcare, offering unique capabilities in mixed reality, which Apple terms "spatial computing." This narrative review aims to explore the various applications of AVP in medical technology, emphasizing its impact on patient care, clinical practices, medical education, and future directions. The review synthesizes findings from multiple studies and articles published between January 2023 and May 2024, highlighting AVP's potential to enhance visualization in diagnostic imaging and surgical planning, assist visually impaired patients, and revolutionize medical education through immersive learning environments. Despite its promise, challenges remain in integrating AVP into existing healthcare systems and understanding its long-term impact on patient outcomes. As research continues, AVP is poised to play a pivotal role in the future of medicine, offering a transformative tool for healthcare professionals.
Collapse
Affiliation(s)
- Nandan M Shanbhag
- Oncology/Radiation Oncology/Palliative Care, Tawam Hospital, Al Ain, ARE
- College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, ARE
| | | | | | - Khalid Balaraj
- Oncology/Radiation Oncology, Tawam Hospital, Al Ain, ARE
| |
Collapse
|
5
|
Laswick Z, Wu X, Surendran A, Zhou Z, Ji X, Matrone GM, Leong WL, Rivnay J. Tunable anti-ambipolar vertical bilayer organic electrochemical transistor enable neuromorphic retinal pathway. Nat Commun 2024; 15:6309. [PMID: 39060249 PMCID: PMC11282299 DOI: 10.1038/s41467-024-50496-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Increasing demand for bio-interfaced human-machine interfaces propels the development of organic neuromorphic electronics with small form factors leveraging both ionic and electronic processes. Ion-based organic electrochemical transistors (OECTs) showing anti-ambipolarity (OFF-ON-OFF states) reduce the complexity and size of bio-realistic Hodgkin-Huxley(HH) spiking circuits and logic circuits. However, limited stable anti-ambipolar organic materials prevent the design of integrated, tunable, and multifunctional neuromorphic and logic-based systems. In this work, a general approach for tuning anti-ambipolar characteristics is presented through assembly of a p-n bilayer in a vertical OECT (vOECT) architecture. The vertical OECT design reduces device footprint, while the bilayer material tuning controls the anti-ambipolarity characteristics, allowing control of the device's on and off threshold voltages, and peak position, while reducing size thereby enabling tunable threshold spiking neurons and logic gates. Combining these components, a mimic of the retinal pathway reproducing the wavelength and light intensity encoding of horizontal cells to spiking retinal ganglion cells is demonstrated. This work enables further incorporation of conformable and adaptive OECT electronics into biointegrated devices featuring sensory coding through parallel processing for diverse artificial intelligence and computing applications.
Collapse
Affiliation(s)
- Zachary Laswick
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Xihu Wu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Abhijith Surendran
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Zhongliang Zhou
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xudong Ji
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | | | - Wei Lin Leong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
6
|
Han S, Kim T, Kim C, Lee S. Design and simulation of artificial retinal stimulation IC with switched capacitor using Si nanowire optical properties. Sci Prog 2024; 107:368504241275372. [PMID: 39223921 PMCID: PMC11375642 DOI: 10.1177/00368504241275372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This study introduces an approach for converting the current from a sensor into controllable voltage. To this end, a switched-capacitor structure was integrated to provide efficient current-to-voltage conversion. The generated voltage was further regulated by an operational amplifier current source, enhancing stability and precision. An n-type metal oxide semiconductor field-effect transistor structure under an H-bridge was integrated into the system to achieve fine-tuned control over current stimulation. This component contributed to voltage regulation and enabled bi-directional control of current flow, offering versatility in adjusting current amplitudes using working and counter electrodes. This dynamic control mechanism was pivotal for effectively controlling the intensity of current stimulation. We applied Verilog-A modeling to simulate the optical characteristics of Si nanowires. The proposed system efficiently converted sensor-derived current into voltage using a switched-capacitor structure. Simultaneously, the precision was enhanced via operational amplifier regulation and n-type metal-oxide-semiconductor field-effect transistor-based H-bridge control. The simulation showed a current stimulus amplitude ranging from 2 to 13 μA for a variable photocurrent of Si nanowires (Rex: 10 kΩ, pulse: 100 Hz, 1 ms). The ability to finely control current stimulation intensity holds promise for diverse applications requiring accurate and adjustable current manipulation. This study contributes to the growing field of sensor technology by offering a unique perspective on the integration of nanostructures and electronic components for an enhanced control and functionality.
Collapse
Affiliation(s)
- Seungju Han
- Department of Electronics and Information convergence Engineering, Kyunghee University, Yongin, Republic of Korea
| | - Taehwan Kim
- Department of Electronics and Information convergence Engineering, Kyunghee University, Yongin, Republic of Korea
| | - Changhee Kim
- Department of Electronics and Information convergence Engineering, Kyunghee University, Yongin, Republic of Korea
| | - Sangmin Lee
- Department of Biomedical Engineering, Kyunghee University, Yongin, Republic of Korea
| |
Collapse
|
7
|
Zhang B, Zhang R, Zhao J, Yang J, Xu S. The mechanism of human color vision and potential implanted devices for artificial color vision. Front Neurosci 2024; 18:1408087. [PMID: 38962178 PMCID: PMC11221215 DOI: 10.3389/fnins.2024.1408087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024] Open
Abstract
Vision plays a major role in perceiving external stimuli and information in our daily lives. The neural mechanism of color vision is complicated, involving the co-ordinated functions of a variety of cells, such as retinal cells and lateral geniculate nucleus cells, as well as multiple levels of the visual cortex. In this work, we reviewed the history of experimental and theoretical studies on this issue, from the fundamental functions of the individual cells of the visual system to the coding in the transmission of neural signals and sophisticated brain processes at different levels. We discuss various hypotheses, models, and theories related to the color vision mechanism and present some suggestions for developing novel implanted devices that may help restore color vision in visually impaired people or introduce artificial color vision to those who need it.
Collapse
Affiliation(s)
- Bingao Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices, Institute of Physical Electronics, Department of Electronics, Peking University, Beijing, China
| | - Rong Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices, Institute of Physical Electronics, Department of Electronics, Peking University, Beijing, China
| | - Jingjin Zhao
- Key Laboratory for the Physics and Chemistry of Nanodevices, Institute of Physical Electronics, Department of Electronics, Peking University, Beijing, China
| | - Jiarui Yang
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Shengyong Xu
- Key Laboratory for the Physics and Chemistry of Nanodevices, Institute of Physical Electronics, Department of Electronics, Peking University, Beijing, China
| |
Collapse
|
8
|
Mehmood A, Ko J, Kim H, Kim J. Optimizing Image Enhancement: Feature Engineering for Improved Classification in AI-Assisted Artificial Retinas. SENSORS (BASEL, SWITZERLAND) 2024; 24:2678. [PMID: 38732784 PMCID: PMC11085662 DOI: 10.3390/s24092678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024]
Abstract
Artificial retinas have revolutionized the lives of many blind people by enabling their ability to perceive vision via an implanted chip. Despite significant advancements, there are some limitations that cannot be ignored. Presenting all objects captured in a scene makes their identification difficult. Addressing this limitation is necessary because the artificial retina can utilize a very limited number of pixels to represent vision information. This problem in a multi-object scenario can be mitigated by enhancing images such that only the major objects are considered to be shown in vision. Although simple techniques like edge detection are used, they fall short in representing identifiable objects in complex scenarios, suggesting the idea of integrating primary object edges. To support this idea, the proposed classification model aims at identifying the primary objects based on a suggested set of selective features. The proposed classification model can then be equipped into the artificial retina system for filtering multiple primary objects to enhance vision. The suitability of handling multi-objects enables the system to cope with real-world complex scenarios. The proposed classification model is based on a multi-label deep neural network, specifically designed to leverage from the selective feature set. Initially, the enhanced images proposed in this research are compared with the ones that utilize an edge detection technique for single, dual, and multi-object images. These enhancements are also verified through an intensity profile analysis. Subsequently, the proposed classification model's performance is evaluated to show the significance of utilizing the suggested features. This includes evaluating the model's ability to correctly classify the top five, four, three, two, and one object(s), with respective accuracies of up to 84.8%, 85.2%, 86.8%, 91.8%, and 96.4%. Several comparisons such as training/validation loss and accuracies, precision, recall, specificity, and area under a curve indicate reliable results. Based on the overall evaluation of this study, it is concluded that using the suggested set of selective features not only improves the classification model's performance, but aligns with the specific problem to address the challenge of correctly identifying objects in multi-object scenarios. Therefore, the proposed classification model designed on the basis of selective features is considered to be a very useful tool in supporting the idea of optimizing image enhancement.
Collapse
Affiliation(s)
- Asif Mehmood
- Department of Biomedical Engineering, College of IT Convergence, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| | - Jungbeom Ko
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon 21936, Republic of Korea;
| | - Hyunchul Kim
- School of Information, University of California, 102 South Hall 4600, Berkeley, CA 94720, USA;
| | - Jungsuk Kim
- Department of Biomedical Engineering, College of IT Convergence, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
- Research and Development Laboratory, Cellico Company, Seongnam-si 13449, Republic of Korea
| |
Collapse
|
9
|
Azrad Leibovitch T, Farah N, Markus A, Mandel Y. A novel GCaMP6f-RCS rat model for studying electrical stimulation in the degenerated retina. Front Cell Dev Biol 2024; 12:1386141. [PMID: 38711618 PMCID: PMC11070775 DOI: 10.3389/fcell.2024.1386141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/25/2024] [Indexed: 05/08/2024] Open
Abstract
Background: Retinal prostheses aim to restore vision by electrically stimulating the remaining viable retinal cells in Retinal Degeneration (RD) cases. Research in this field necessitates a comprehensive analysis of retinal ganglion cells' (RGCs) responses to assess the obtained visual acuity and quality. Here we present a novel animal model which facilitates the optical recording of RGCs activity in an RD rat. This model can significantly enhance the functional evaluation of vision restoration treatments. Methods: The development of the novel rat model is based on crossbreeding a retinal degenerated Royal College of Surgeons (RCS) rat with a transgenic line expressing the genetic calcium indicator GCaMP6f in the RGCs. Characterization of the model was achieved using Optical Coherence Tomography (OCT) imaging, histology, and electroretinography (ERG) at the ages of 4, 8, and 12 weeks. Additionally, optical recordings of RGCs function in response to ex-vivo subretinal electrical stimulations were performed. Results: Histological investigations confirmed the high expression of GCaMP6f in the RGCs and minimal expression in the inner nuclear layer (INL). OCT imaging and histological studies revealed the expected gradual retinal degeneration, as evident by the decrease in retinal thickness with age and the formation of subretinal debris. This degeneration was further confirmed by ERG recordings, which demonstrated a significant decrease in the b-wave amplitude throughout the degeneration process, culminating in its absence at 12 weeks in the GCaMP6f-RCS rat. Importantly, the feasibility of investigating subretinal stimulation was demonstrated, revealing a consistent increase in activation threshold throughout degeneration. Furthermore, an increase in the diameter of the activated area with increasing currents was observed. The spatial spread of the activation area in the GCaMP6f-RCS rat was found to be smaller and exhibited faster activation dynamics compared with the GCaMP6f-LE strain. Conclusion: This novel animal model offers an opportunity to deepen our understanding of prosthetically induced retinal responses, potentially leading to significant advancements in prosthetic interventions in visual impairments.
Collapse
Affiliation(s)
- Tamar Azrad Leibovitch
- Bar Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar Ilan University, Ramat Gan, Israel
- Faculty of Life Sciences, School of Optometry and Visual Science, Bar Ilan University, Ramat Gan, Israel
| | - Nairouz Farah
- Bar Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar Ilan University, Ramat Gan, Israel
- Faculty of Life Sciences, School of Optometry and Visual Science, Bar Ilan University, Ramat Gan, Israel
| | - Amos Markus
- Bar Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar Ilan University, Ramat Gan, Israel
- Faculty of Life Sciences, School of Optometry and Visual Science, Bar Ilan University, Ramat Gan, Israel
| | - Yossi Mandel
- Bar Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar Ilan University, Ramat Gan, Israel
- Faculty of Life Sciences, School of Optometry and Visual Science, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
10
|
Whalen M, Akula M, McNamee SM, DeAngelis MM, Haider NB. Seeing the Future: A Review of Ocular Therapy. Bioengineering (Basel) 2024; 11:179. [PMID: 38391665 PMCID: PMC10886198 DOI: 10.3390/bioengineering11020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Ocular diseases present a unique challenge and opportunity for therapeutic development. The eye has distinct advantages as a therapy target given its accessibility, compartmentalization, immune privilege, and size. Various methodologies for therapeutic delivery in ocular diseases are under investigation that impact long-term efficacy, toxicity, invasiveness, and delivery range. While gene, cell, and antibody therapy and nanoparticle delivery directly treat regions that have been damaged by disease, they can be limited in the duration of the therapeutic delivery and have a focal effect. In contrast, contact lenses and ocular implants can more effectively achieve sustained and widespread delivery of therapies; however, they can increase dilution of therapeutics, which may result in reduced effectiveness. Current therapies either offer a sustained release or a broad therapeutic effect, and future directions should aim toward achieving both. This review discusses current ocular therapy delivery systems and their applications, mechanisms for delivering therapeutic products to ocular tissues, advantages and challenges associated with each delivery system, current approved therapies, and clinical trials. Future directions for the improvement in existing ocular therapies include combination therapies, such as combined cell and gene therapies, as well as AI-driven devices, such as cortical implants that directly transmit visual information to the cortex.
Collapse
Affiliation(s)
- Maiya Whalen
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | - Margaret M DeAngelis
- Department of Ophthalmology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Neena B Haider
- Shifa Precision, Boston, MA 02138, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02138, USA
| |
Collapse
|
11
|
Vingolo EM, Mascolo S, Miccichè F, Manco G. Retinitis Pigmentosa: From Pathomolecular Mechanisms to Therapeutic Strategies. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:189. [PMID: 38276069 PMCID: PMC10819364 DOI: 10.3390/medicina60010189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Retinitis pigmentosa is an inherited disease, in which mutations in different types of genes lead to the death of photoreceptors and the loss of visual function. Although retinitis pigmentosa is the most common type of inherited retinal dystrophy, a clear line of therapy has not yet been defined. In this review, we will focus on the therapeutic aspect and attempt to define the advantages and disadvantages of the protocols of different therapies. The role of some therapies, such as antioxidant agents or gene therapy, has been established for years now. Many clinical trials on different genes and mutations causing RP have been conducted, and the approval of voretigene nepavorec by the FDA has been an important step forward. Nonetheless, even if gene therapy is the most promising type of treatment for these patients, other innovative strategies, such as stem cell transplantation or hyperbaric oxygen therapy, have been shown to be safe and improve visual quality during clinical trials. The treatment of this disease remains a challenge, to which we hope to find a solution as soon as possible.
Collapse
Affiliation(s)
| | - Simona Mascolo
- Sense Organs Department, UOSD of Ophtalmology, University la Sapienza of Rome, Polo Pontino-Ospedale A. Fiorini, 4019 Terracina, Italy; (E.M.V.); (F.M.); (G.M.)
| | | | | |
Collapse
|
12
|
Li L, Jiang C, Li L. A Comparative Study on the Effect of Substrate Structure on Electrochemical Performance and Stability of Electrodeposited Platinum and Iridium Oxide Coatings for Neural Electrodes. MICROMACHINES 2023; 15:70. [PMID: 38258189 PMCID: PMC10821385 DOI: 10.3390/mi15010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024]
Abstract
Implantable electrodes are crucial for stimulation safety and recording quality of neuronal activity. To enhance their electrochemical performance, electrodeposited nanostructured platinum (nanoPt) and iridium oxide (IrOx) have been proposed due to their advantages of in situ deposition and ease of processing. However, their unstable adhesion has been a challenge in practical applications. This study investigated the electrochemical performance and stability of nanoPt and IrOx coatings on hierarchical platinum-iridium (Pt-Ir) substrates prepared by femtosecond laser, compared with the coatings on smooth Pt-Ir substrates. Ultrasonic testing, agarose gel testing, and cyclic voltammetry (CV) testing were used to evaluate the coatings' stability. Results showed that the hierarchical Pt-Ir substrate significantly enhanced the charge-storage capacity of electrodes with both coatings to more than 330 mC/cm2, which was over 75 times that of the smooth Pt-Ir electrode. The hierarchical substrate could also reduce the cracking of nanoPt coatings after ultrasonic, agarose gel and CV testing. Although some shedding was observed in the IrOx coating on the hierarchical substrate after one hour of sonication, it showed good stability in the agarose gel and CV tests. Stable nanoPt and IrOx coatings may not only improve the electrochemical performance but also benefit the function of neurobiochemical detection.
Collapse
Affiliation(s)
- Linze Li
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
| | - Changqing Jiang
- National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Luming Li
- National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Wu KY, Akbar D, Giunta M, Kalevar A, Tran SD. Hydrogels in Ophthalmology: Novel Strategies for Overcoming Therapeutic Challenges. MATERIALS (BASEL, SWITZERLAND) 2023; 17:86. [PMID: 38203940 PMCID: PMC10780040 DOI: 10.3390/ma17010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
The human eye's intricate anatomical and physiological design necessitates tailored approaches for managing ocular diseases. Recent advancements in ophthalmology underscore the potential of hydrogels as a versatile therapeutic tool, owing to their biocompatibility, adaptability, and customizability. This review offers an exploration of hydrogel applications in ophthalmology over the past five years. Emphasis is placed on their role in optimized drug delivery for the posterior segment and advancements in intraocular lens technology. Hydrogels demonstrate the capacity for targeted, controlled, and sustained drug release in the posterior segment of the eye, potentially minimizing invasive interventions and enhancing patient outcomes. Furthermore, in intraocular lens domains, hydrogels showcase potential in post-operative drug delivery, disease sensing, and improved biocompatibility. However, while their promise is immense, most hydrogel-based studies remain preclinical, necessitating rigorous clinical evaluations. Patient-specific factors, potential complications, and the current nascent stage of research should inform their clinical application. In essence, the incorporation of hydrogels into ocular therapeutics represents a seminal convergence of material science and medicine, heralding advancements in patient-centric care within ophthalmology.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Dania Akbar
- Department of Human Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Michel Giunta
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Ananda Kalevar
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|