1
|
Khand NH, Solangi AR, Shaikh H, Shah ZUH, Bhagat S, Sherazi STH, López-Maldonado EA. Novel electrochemical ZnO/MnO 2/rGO nanocomposite-based catalyst for simultaneous determination of hydroquinone and pyrocatechol. Mikrochim Acta 2024; 191:342. [PMID: 38795174 DOI: 10.1007/s00604-024-06416-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/05/2024] [Indexed: 05/27/2024]
Abstract
An innovative electrochemical sensing method is introduced for dihydroxy benzene (DHB) isomers, specifically hydroquinone (HQ) and pyrocatechol (PCC), employing a zinc-oxide/manganese-oxide/reduced-graphene-oxide (ZnO/MnO2/rGO) nanocomposite (NC) as an electrode modifier material. Comprehensive characterization confirmed well-dispersed ZnO/MnO2 nanoparticles on rGO sheets. Electrochemical analysis revealed the ZnO/MnO2/rGO-NC-based modified electrode possesses low electrical resistance (126.2 Ω), high electrocatalytic activity, and rapid electron transport, attributed to the synergies between ZnO, MnO2 and rGO. The modified electrode demonstrated exceptional electrochemical performance in terms of selectivity for the simultaneous detection of HQ and PCC. Differential pulse voltammetry studies validated the proposed sensor's ability to detect HQ and PCC within linear response ranges of 0.01-115 μM and 0.03-60.53 μM, with detection limits of 0.0055 µM and 0.0053 µM, respectively. Practical validation using diverse water samples showcased excellent percent recovery of HQ and PCC using the ZnO/MnO2/rGO-based electrochemical sensor, underscoring the sensor's potential for real-world applications in environmental monitoring.
Collapse
Affiliation(s)
- Nadir H Khand
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Amber R Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan.
| | - Huma Shaikh
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Zia-Ul-Hassan Shah
- Department of Soil Science, Sindh Agriculture University, Tandojam, Pakistan
| | - Sanoober Bhagat
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Syed Tufail H Sherazi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Eduardo Alberto López-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja, 22390, Tijuana, Baja California, CA, CP, Mexico
| |
Collapse
|
2
|
Tajik S, Shams P, Beitollahi H, Garkani Nejad F. Electrochemical Nanosensor for the Simultaneous Determination of Anticancer Drugs Epirubicin and Topotecan Using UiO-66-NH 2/GO Nanocomposite Modified Electrode. BIOSENSORS 2024; 14:229. [PMID: 38785703 PMCID: PMC11117627 DOI: 10.3390/bios14050229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
In this work, UiO-66-NH2/GO nanocomposite was prepared using a simple solvothermal technique, and its structure and morphology were characterized using field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). An enhanced electrochemical sensor for the detection of epirubicin (EP) was proposed, which utilized a UiO-66-NH2/GO nanocomposite-modified screen-printed graphite electrode (UiO-66-NH2/GO/SPGE). The prepared UiO-66-NH2/GO nanocomposite improved the electrochemical performance of the SPGE towards the redox reaction of EP. Under optimized experimental conditions, this sensor demonstrates a remarkable limit of detection (LOD) of 0.003 µM and a linear dynamic range from 0.008 to 200.0 µM, providing a highly capable platform for sensing EP. Furthermore, the simultaneous electro-catalytic oxidation of EP and topotecan (TP) was investigated at the UiO-66-NH2/GO/SPGE surface utilizing differential pulse voltammetry (DPV). DPV measurements revealed the presence of two distinct oxidation peaks of EP and TP, with a peak potential separation of 200 mV. Finally, the UiO-66-NH2/GO/SPGE sensor was successfully utilized for the quantitative analysis of EP and TP in pharmaceutical injection, yielding highly satisfactory results.
Collapse
Affiliation(s)
- Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 76169-13555, Iran
| | - Parisa Shams
- Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman 76169-13555, Iran;
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 76318-85356, Iran; (H.B.); (F.G.N.)
| | - Fariba Garkani Nejad
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 76318-85356, Iran; (H.B.); (F.G.N.)
| |
Collapse
|
3
|
Stanković V, Đurđić S, Ognjanović M, Zlatić G, Stanković D. Triangle-Shaped Cerium Tungstate Nanoparticles Used to Modify Carbon Paste Electrode for Sensitive Hydroquinone Detection in Water Samples. SENSORS (BASEL, SWITZERLAND) 2024; 24:705. [PMID: 38276396 PMCID: PMC10818471 DOI: 10.3390/s24020705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
In this study, we propose an eco-friendly method for synthesizing cerium tungstate nanoparticles using hydrothermal techniques. We used scanning, transmission electron microscopy, and X-ray diffraction to analyze the morphology of the synthesized nanoparticles. The results showed that the synthesized nanoparticles were uniform and highly crystalline, with a particle size of about 50 nm. The electrocatalytic properties of the nanoparticles were then investigated using cyclic voltammetry and electrochemical impedance spectroscopy. We further used the synthesized nanoparticles to develop an electrochemical sensor based on a carbon paste electrode that can detect hydroquinone. By optimizing the differential pulse voltammetric method, a wide linearity range of 0.4 to 45 µM and a low detection limit of 0.06 µM were obtained. The developed sensor also expressed excellent repeatability (RSD up to 3.8%) and reproducibility (RSD below 5%). Interferences had an insignificant impact on the determination of analytes, making it possible to use this method for monitoring hydroquinone concentrations in tap water. This study introduces a new approach to the chemistry of materials and the environment and demonstrates that a careful selection of components can lead to new horizons in analytical chemistry.
Collapse
Affiliation(s)
- Vesna Stanković
- Institute for Chemistry, Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Slađana Đurđić
- Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia;
| | - Miloš Ognjanović
- Institute for Nuclear Science Vinča, University of Belgrade, 11000 Belgrade, Serbia;
| | - Gloria Zlatić
- Faculty of Science and Education, University of Mostar, 88000 Mostar, Bosnia and Herzegovina;
| | - Dalibor Stanković
- Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
4
|
Patil SS, Narwade VN, Sontakke KS, Hianik T, Shirsat MD. Layer-by-Layer Immobilization of DNA Aptamers on Ag-Incorporated Co-Succinate Metal-Organic Framework for Hg(II) Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:346. [PMID: 38257438 PMCID: PMC10818963 DOI: 10.3390/s24020346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024]
Abstract
Layer-by-layer (LbL) immobilization of DNA aptamers in the realm of electrochemical detection of heavy metal ions (HMIs) offers an enhancement in specificity, sensitivity, and low detection limits by leveraging the cross-reactivity obtained from multiple interactions between immobilized aptamers and developed material surfaces. In this research, we present a LbL approach for the immobilization of thiol- and amino-modified DNA aptamers on a Ag-incorporated cobalt-succinate metal-organic framework (MOF) (Ag@Co-Succinate) to achieve a cross-reactive effect on the electrochemical behavior of the sensor. The solvothermal method was utilized to synthesize Ag@Co-Succinate, which was also characterized through various techniques to elucidate its structure, morphology, and presence of functional groups, confirming its suitability as a host matrix for immobilizing both aptamers. The Ag@Co-Succinate aptasensor exhibited extraordinary sensitivity and selectivity towards Hg(II) ions in electrochemical detection, attributed to the unique binding properties of the immobilized aptamers. The exceptional limit of detection of 0.3 nM ensures the sensor's suitability for trace-level Hg(II) detection in various environmental and analytical applications. Furthermore, the developed sensor demonstrated outstanding repeatability, highlighting its potential for long-term and reliable monitoring of Hg(II).
Collapse
Affiliation(s)
- Shubham S. Patil
- RUSA-Centre for Advanced Sensor Technology, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, India; (S.S.P.); (V.N.N.)
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovakia;
| | - Vijaykiran N. Narwade
- RUSA-Centre for Advanced Sensor Technology, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, India; (S.S.P.); (V.N.N.)
| | - Kiran S. Sontakke
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovakia;
| | - Tibor Hianik
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovakia;
| | - Mahendra D. Shirsat
- RUSA-Centre for Advanced Sensor Technology, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, India; (S.S.P.); (V.N.N.)
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovakia;
| |
Collapse
|
5
|
Levshakova A, Kaneva M, Borisov E, Panov M, Shmalko A, Nedelko N, Mereshchenko AS, Skripkin M, Manshina A, Khairullina E. Simultaneous Catechol and Hydroquinone Detection with Laser Fabricated MOF-Derived Cu-CuO@C Composite Electrochemical Sensor. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7225. [PMID: 38005154 PMCID: PMC10673110 DOI: 10.3390/ma16227225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
The conversion of metal-organic frameworks (MOFs) into advanced functional materials offers a promising route for producing unique nanomaterials. MOF-derived systems have the potential to overcome the drawbacks of MOFs, such as low electrical conductivity and poor structural stability, which have hindered their real-world applications in certain cases. In this study, laser scribing was used for pyrolysis of a Cu-based MOF ([Cu4{1,4-C6H4(COO)2}3(4,4'-bipy)2]n) to synthesize a Cu-CuO@C composite on the surface of a screen-printed electrode (SPE). Scanning electron microscopy, X-ray diffractometry, and Energy-dispersive X-ray spectroscopy were used for the investigation of the morphology and composition of the fabricated electrodes. The electrochemical properties of Cu-CuO@C/SPE were studied by cyclic voltammetry and differential pulse voltammetry. The proposed flexible electrochemical Cu-CuO@C/SPE sensor for the simultaneous detection of hydroquinone and catechol exhibited good sensitivity, broad linear range (1-500 μM), and low limits of detection (0.39 μM for HQ and 0.056 μM for CT).
Collapse
Affiliation(s)
- Aleksandra Levshakova
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia; (A.L.); (M.K.); or (M.P.); (N.N.); (A.S.M.); (M.S.)
| | - Maria Kaneva
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia; (A.L.); (M.K.); or (M.P.); (N.N.); (A.S.M.); (M.S.)
- Ioffe Institute, St. Petersburg 194021, Russia
| | - Evgenii Borisov
- Center for Optical and Laser Materials Research, St. Petersburg University, St. Petersburg 199034, Russia;
| | - Maxim Panov
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia; (A.L.); (M.K.); or (M.P.); (N.N.); (A.S.M.); (M.S.)
- Faculty of Pharmaceutical Technology, St. Petersburg State Chemical Pharmaceutical University, Professor Popov Str., 14, Lit. A, St. Petersburg 197022, Russia
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, St. Petersburg 194021, Russia;
| | - Alexandr Shmalko
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, St. Petersburg 194021, Russia;
| | - Nikolai Nedelko
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia; (A.L.); (M.K.); or (M.P.); (N.N.); (A.S.M.); (M.S.)
| | - Andrey S. Mereshchenko
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia; (A.L.); (M.K.); or (M.P.); (N.N.); (A.S.M.); (M.S.)
| | - Mikhail Skripkin
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia; (A.L.); (M.K.); or (M.P.); (N.N.); (A.S.M.); (M.S.)
| | - Alina Manshina
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia; (A.L.); (M.K.); or (M.P.); (N.N.); (A.S.M.); (M.S.)
| | - Evgeniia Khairullina
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia; (A.L.); (M.K.); or (M.P.); (N.N.); (A.S.M.); (M.S.)
- School of Physics and Engineering, ITMO University, St. Petersburg 191002, Russia
| |
Collapse
|