1
|
Oluz Z, Yazlak MG, Kurşun TT, Nayab S, Glasser G, Yameen B, Duran H. Silica Nanoparticles Tailored with a Molecularly Imprinted Copolymer Layer as a Highly Selective Biorecognition Element. Macromol Rapid Commun 2024; 45:e2400471. [PMID: 39183584 DOI: 10.1002/marc.202400471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/24/2024] [Indexed: 08/27/2024]
Abstract
Molecularly imprinted silica nanoparticles (SP-MIP) are synthesized for the real-time optical detection of low-molecular-weight compounds. Azo-initiator-modified silica beads are functionalized through reversible addition-fragmentation chain transfer (RAFT) polymerization, which leads to efficient control of the grafted layer. The copolymerization of methacrylic acid (MAA) and ethylene glycol dimethacrylate (EDMA) on azo initiator-coated silica particles (≈100 nm) using chain transfer agent (2-phenylprop-2-yl-dithiobenzoate) is carried out in the presence of a target analyte molecule (l-Boc-phenylalanine anilide, l-BFA). The chemical and morphological properties of SP-MIP are characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller surface analysis, and thermogravimetric analysis. Finally, SP-MIP is located on the gold surface to be used as a biorecognition layer on the surface plasmon resonance spectrometer (SPR). The sensitivity, response time, and selectivity of SP-MIP are investigated by three similar analogous molecules (l-Boc-Tryptophan, l-Boc-Tyrosine, and l-Boc-Phenylalanine) and the imprinted particle surface showed excellent relative selectivity toward l-Boc-Phenylalanine (l-BFA) (k = 61), while the sensitivity is recorded as limit of detection = 1.72 × 10-4 m.
Collapse
Affiliation(s)
- Zehra Oluz
- Department of Materials Science & Nanotechnology Engineering, TOBB University of Economics and Technology, Söğütözü Cad. 43, Ankara, 06560, Turkiye
| | - Mustafa Göktürk Yazlak
- Department of Materials Science & Nanotechnology Engineering, TOBB University of Economics and Technology, Söğütözü Cad. 43, Ankara, 06560, Turkiye
| | - Tuğana Talya Kurşun
- Chemistry Department, Gazi University, Bandırma Cad. No:6/1, Ankara, 06560, Turkiye
| | - Sana Nayab
- Department of Chemistry, School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Gunnar Glasser
- Max-Planck-Institute fuer Polymerforschung, Ackermannweg 10, 55128, Mainz, Rhineland-Palatinate, Germany
| | - Basit Yameen
- Department of Chemistry, School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Hatice Duran
- Department of Materials Science & Nanotechnology Engineering, TOBB University of Economics and Technology, Söğütözü Cad. 43, Ankara, 06560, Turkiye
- UNAM - National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkiye
| |
Collapse
|
2
|
Guo S, Liu S, Liu C, Wang Y, Gu D, Tian J, Yang Y. Biomimetic immobilization of α-glucosidase inspired by antibody-antigen specific recognition for catalytic preparation of 4-methylumbelliferone. Int J Biol Macromol 2024; 268:131697. [PMID: 38688333 DOI: 10.1016/j.ijbiomac.2024.131697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Immobilization technology plays an important role in enhancing enzyme stability and environmental adaptability. Despite its rapid development, this technology still encounters many challenges such as enzyme leakage, difficulties in large-scale implementation, and limited reusability. Drawing inspiration from natural paired molecules, this study aimed to establish a method for immobilized α-glucosidase using artificial antibody-antigen interaction. The proposed method consists of three main parts: synthesis of artificial antibodies, synthesis of artificial antigens, and assembly of the artificial antibody-antigen complex. The critical step in this method involves selecting a pair of structurally similar compounds: catechol as a template for preparing artificial antibodies and protocatechualdehyde for modifying the enzyme to create the artificial antigens. By utilizing the same functional groups in these compounds, specific recognition of the antigen by the artificial antibody can be achieved, thereby immobilizing the enzymes. The results demonstrated that the immobilization amount, specific activity, and enzyme activity of the immobilized α-glucosidase were 25.09 ± 0.10 mg/g, 5.71 ± 0.17 U/mgprotein and 143.25 ± 1.71 U/gcarrier, respectively. The immobilized α-glucosidase not only exhibited excellent reusability but also demonstrated remarkable performance in catalyzing the hydrolysis of 4-methylumbelliferyl-α-D-glucopyranoside.
Collapse
Affiliation(s)
- Shuang Guo
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Shuo Liu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Chang Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Dongyu Gu
- College of Marine Science and Environment, Dalian Ocean University, Dalian 116023, China.
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Yi Yang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
3
|
Sarvutiene J, Prentice U, Ramanavicius S, Ramanavicius A. Molecular imprinting technology for biomedical applications. Biotechnol Adv 2024; 71:108318. [PMID: 38266935 DOI: 10.1016/j.biotechadv.2024.108318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
Molecularly imprinted polymers (MIPs), a type of biomimetic material, have attracted considerable interest owing to their cost-effectiveness, good physiochemical stability, favourable specificity and selectivity for target analytes, and widely used for various biological applications. It was demonstrated that MIPs with significant selectivity towards protein-based targets could be applied in medicine, diagnostics, proteomics, environmental analysis, sensors, various in vivo and/or in vitro applications, drug delivery systems, etc. This review provides an overview of MIPs dedicated to biomedical applications and insights into perspectives on the application of MIPs in newly emerging areas of biotechnology. Many different protocols applied for the synthesis of MIPs are overviewed in this review. The templates used for molecular imprinting vary from the minor glycosylated glycan-based structures, amino acids, and proteins to whole bacteria, which are also overviewed in this review. Economic, environmental, rapid preparation, stability, and reproducibility have been highlighted as significant advantages of MIPs. Particularly, some specialized MIPs, in addition to molecular recognition properties, can have high catalytic activity, which in some cases could be compared with other bio-catalytic systems. Therefore, such MIPs belong to the class of so-called 'artificial enzymes'. The discussion provided in this manuscript furnishes a comparative analysis of different approaches developed, underlining their relative advantages and disadvantages highlighting trends and possible future directions of MIP technology.
Collapse
Affiliation(s)
- Julija Sarvutiene
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania
| | - Urte Prentice
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania
| | - Simonas Ramanavicius
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania.
| |
Collapse
|
4
|
Yan L, Xu L. Fluorescent nano‐particles prepared by
eATRP
combined with self‐assembly imprinting technology. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Liu Yan
- School of Chemistry and Chemical Engineering Southwest University Chongqing People's Republic of China
| | - Lan Xu
- School of Chemistry and Chemical Engineering Southwest University Chongqing People's Republic of China
| |
Collapse
|
5
|
Abadi B, Goshtasbi N, Bolourian S, Tahsili J, Adeli-Sardou M, Forootanfar H. Electrospun hybrid nanofibers: Fabrication, characterization, and biomedical applications. Front Bioeng Biotechnol 2022; 10:986975. [PMID: 36561047 PMCID: PMC9764016 DOI: 10.3389/fbioe.2022.986975] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
Nanotechnology is one of the most promising technologies available today, holding tremendous potential for biomedical and healthcare applications. In this field, there is an increasing interest in the use of polymeric micro/nanofibers for the construction of biomedical structures. Due to its potential applications in various fields like pharmaceutics and biomedicine, the electrospinning process has gained considerable attention for producing nano-sized fibers. Electrospun nanofiber membranes have been used in drug delivery, controlled drug release, regenerative medicine, tissue engineering, biosensing, stent coating, implants, cosmetics, facial masks, and theranostics. Various natural and synthetic polymers have been successfully electrospun into ultrafine fibers. Although biopolymers demonstrate exciting properties such as good biocompatibility, non-toxicity, and biodegradability, they possess poor mechanical properties. Hybrid nanofibers from bio and synthetic nanofibers combine the characteristics of biopolymers with those of synthetic polymers, such as high mechanical strength and stability. In addition, a variety of functional agents, such as nanoparticles and biomolecules, can be incorporated into nanofibers to create multifunctional hybrid nanofibers. Due to the remarkable properties of hybrid nanofibers, the latest research on the unique properties of hybrid nanofibers is highlighted in this study. Moreover, various established hybrid nanofiber fabrication techniques, especially the electrospinning-based methods, as well as emerging strategies for the characterization of hybrid nanofibers, are summarized. Finally, the development and application of electrospun hybrid nanofibers in biomedical applications are discussed.
Collapse
Affiliation(s)
- Banafshe Abadi
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran,Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Kerman, Iran
| | - Nazanin Goshtasbi
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saman Bolourian
- Department of Biology, Faculty of Science, Alzahra University, Tehran, Iran
| | - Jaleh Tahsili
- Department of Plant Biology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Mahboubeh Adeli-Sardou
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran,Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran,*Correspondence: Mahboubeh Adeli-Sardou, ; Hamid Forootanfar,
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran,*Correspondence: Mahboubeh Adeli-Sardou, ; Hamid Forootanfar,
| |
Collapse
|
6
|
Akçapınar R, Özgür E, Goodarzi V, Uzun L. Surface imprinted upconversion nanoparticles for selective albumin recognition. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Yuksel N, Tektas S. Molecularly imprinted polymers: preparation, characterisation, and application in drug delivery systems. J Microencapsul 2022; 39:176-196. [PMID: 35319325 DOI: 10.1080/02652048.2022.2055185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Molecular imprinting technology defines the creation of molecularly imprinted polymer (MIP) molecules in which template molecules can place in a key-lock relationship through shape, diameter, and functional groups. Although molecular imprinting technology has been employed in different fields, its applications in drug delivery systems (DDSs) have gained momentum recently. The high loading efficiency, high stability, and controlled drug release are the primary advantages of MIPs. Here, the main components, preparation methods, and characterisation tests of MIPs are summarised, and their applications in DDSs administered by different routes are evaluated in detail. The review offers a perspective on molecular imprinting technology and applications of MIPs in drug delivery by surveying the literature approximately 1998-2021 together with the outlined prospects.
Collapse
Affiliation(s)
- Nilufer Yuksel
- Department of Pharmaceutical Technology, Ankara University, Ankara, Turkey
| | - Sevgi Tektas
- Department of Pharmaceutical Technology, Ankara University, Ankara, Turkey
| |
Collapse
|
8
|
Sajini T, Mathew B. A brief overview of molecularly imprinted polymers: Highlighting computational design, nano and photo-responsive imprinting. TALANTA OPEN 2021. [DOI: 10.1016/j.talo.2021.100072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
9
|
Moreira FTC, Correia BP, Sousa MP, Sales GF. Colorimetric cellulose-based test-strip for rapid detection of amyloid β-42. Mikrochim Acta 2021; 188:334. [PMID: 34498145 DOI: 10.1007/s00604-021-04996-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/13/2021] [Indexed: 11/30/2022]
Abstract
An innovative sensing assay is described for point-of-care (PoC) quantification of a biomarker of Alzheimer's disease, amyloid β-42 (Aβ-42). This device is based on a cellulose paper-dye test strip platform in which the corresponding detection layer is integrated by applying a molecularly imprinted polymer (MIP) to the cellulose paper surface. Briefly, the cellulose paper is chemically modified with a silane to subsequently apply the MIP detection layer. The imprinting process is confirmed by the parallel preparation of a control material, namely a non-imprinted polymer (NIP). The chemical changes of the surface were evaluated by Fourier transform infrared spectroscopy (FTIR), contact angle, and thermogravimetric analysis (TG). Proteins and peptides can be quantified by conventional staining methods. For this purpose, Coomassie blue (CB) was used as a staining dye for the detection and quantification of Aβ-42. Quantitative determination is made possible by taking a photograph and applying an appropriate mathematical treatment to the color coordinates provided by the ImageJ program. The MIP shows a linear range between 1.0 ng/mL and 10 μg/mL and a detection limit of 0.71 ng/mL. Overall, this cellulose-based assay is suitable for the detection of peptides or proteins in a sample by visual comparison of color change. The test strip provides a simple, instrument-free, and cost-effective method with high chemical stability, capable of detecting very small amounts of peptides or proteins in a sample, and can be used for the detection of any (bio)molecule of interest.
Collapse
Affiliation(s)
- Felismina T C Moreira
- BioMark@ISEP, School of Engineering, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal. .,CEB, Centre of Biological Engineering, Minho University, Braga, Portugal.
| | - Barbara P Correia
- BioMark@ISEP, School of Engineering, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal.,CEB, Centre of Biological Engineering, Minho University, Braga, Portugal
| | - Mariana P Sousa
- BioMark@ISEP, School of Engineering, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal.,CEB, Centre of Biological Engineering, Minho University, Braga, Portugal
| | - Goreti F Sales
- CEB, Centre of Biological Engineering, Minho University, Braga, Portugal.,BioMark@UC, Faculty of Sciences and Technology, University of Coimbra, R. Sílvio Lima, pólo II, 3030-790, Coimbra, Portugal
| |
Collapse
|
10
|
Pratama KF, Manik MER, Rahayu D, Hasanah AN. Effect of the Molecularly Imprinted Polymer Component Ratio on Analytical Performance. Chem Pharm Bull (Tokyo) 2021; 68:1013-1024. [PMID: 33132368 DOI: 10.1248/cpb.c20-00551] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Molecular imprinting technology is a new analytical method that is highly selective and specific for certain analytes in artificial receptor design. The renewal possibilities of this technology make it an ideal material for sundry application fields. Molecularly imprinted polymers (MIPs) are polymeric matrices that have molecules printed on their surfaces; these surfaces can chemically interact with molecules or follow the pattern of the available template cavities obtained using imprinting technology. A MIP is useful for separating and analysing complex samples, such as biological fluids and environmental samples, because it is a strong analytical recognition element that can mimick natural recognition entities like biological receptors and antibodies. The MIP components consist of the target template, functional monomer, crosslinker, polymerisation initiator, and porogen. The effectiveness and selectivity of a MIP are greatly influenced by variations in the components. This review will provide an overview of the effect of MIP component ratio on analytical performance to each target analyte; it will also provide a strategy to obtain the best MIP performance. For every MIP, each template : monomer : crosslinker ratio shows a distinct performance for a specific analyte. The effects of the template : monomer : crosslinker ratio on a MIP's analytical performances-measured by the imprinting factor, sorbent binding capacity, and sorbent selectivity-are briefly outlined.
Collapse
Affiliation(s)
- Kelvin Fernando Pratama
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Padjadjaran University
| | | | - Driyanti Rahayu
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Padjadjaran University
| | - Aliya Nur Hasanah
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Padjadjaran University
| |
Collapse
|
11
|
Amr AEGE, Kamel AH, Almehizia AA, Sayed AYA, Abd-Rabboh HSM. Solid-Contact Potentiometric Sensors Based on Main-Tailored Bio-Mimics for Trace Detection of Harmine Hallucinogen in Urine Specimens. Molecules 2021; 26:molecules26020324. [PMID: 33435196 PMCID: PMC7826799 DOI: 10.3390/molecules26020324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 11/21/2022] Open
Abstract
All-solid-state potentiometric sensors have attracted great attention over other types of potentiometric sensors due to their outstanding properties such as enhanced portability, simplicity of handling, affordability and flexibility. Herein, a novel solid-contact ion-selective electrode (SC-ISE) based on poly(3,4-ethylenedioxythiophene) (PEDOT) as the ion-to-electron transducer was designed and characterized for rapid detection of harmine. The harmine-sensing membrane was based on the use of synthesized imprinted bio-mimics as a selective material for this recognition. The imprinted receptors were synthesized using acrylamide (AA) and ethylene glycol dimethacrylate (EGDMA) as functional monomer and cross-linker, respectively. The polymerization process was carried out at 70 °C in the presence of dibenzoyl peroxide (DBO) as an initiator. The sensing membrane in addition to the solid-contact layer was applied to a glassy-carbon disc as an electronic conductor. All performance characteristics of the presented electrode in terms of linearity, detection limit, pH range, response time and selectivity were evaluated. The sensor revealed a wide linearity over the range 2.0 × 10−7–1.0 × 10−2 M, with a detection limit of 0.02 µg/mL and a sensitivity slope of 59.2 ± 0.8 mV/hamine concentration decade. A 40 mM Britton–Robinson (BR) buffer solution at pH of 6 was used for all harmine measurements. The electrode showed good selectivity towards harmine over other common interfering ions, and maintained a stable electrochemical response over two weeks. After applying the validation requirements, the proposed method revealed good performance characteristics. Method precision, accuracy, bias, trueness, repeatability, reproducibility, and uncertainty were also evaluated. These analytical capabilities support the fast and direct assessment of harmine in different urine specimens. The analytical results were compared with the standard liquid chromatographic method. The results obtained demonstrated that PEDOT/PSS was a promising solid-contact ion-to-electron transducer material in the development of harmine-ISE. The electrodes manifested enhanced stability and low cost, which provides a wide number of potential applications for pharmaceutical and forensic analysis.
Collapse
Affiliation(s)
- Abde El-Galil E. Amr
- Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- Applied Organic Chemistry Department, National Research Center, Dokki, Giza 12622, Egypt; (A.A.A.); (A.Y.A.S.)
| | - Ayman H. Kamel
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
- Correspondence: (A.H.K.); (H.S.M.A.-R.); Tel.: +966-565-148-750 (H.S.M.A.-R.)
| | - Abdulrahman A. Almehizia
- Applied Organic Chemistry Department, National Research Center, Dokki, Giza 12622, Egypt; (A.A.A.); (A.Y.A.S.)
| | - Ahmed Y. A. Sayed
- Applied Organic Chemistry Department, National Research Center, Dokki, Giza 12622, Egypt; (A.A.A.); (A.Y.A.S.)
| | - Hisham S. M. Abd-Rabboh
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Correspondence: (A.H.K.); (H.S.M.A.-R.); Tel.: +966-565-148-750 (H.S.M.A.-R.)
| |
Collapse
|
12
|
Bereli N, Çimen D, Hüseynli S, Denizli A. Detection of amoxicillin residues in egg extract with a molecularly imprinted polymer on gold microchip using surface plasmon resonance and quartz crystal microbalance methods. J Food Sci 2020; 85:4152-4160. [DOI: 10.1111/1750-3841.15529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 10/02/2020] [Accepted: 10/12/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Nilay Bereli
- Biochemistry Division, Department of Chemistry Hacettepe University Ankara 06800 Turkey
| | - Duygu Çimen
- Biochemistry Division, Department of Chemistry Hacettepe University Ankara 06800 Turkey
| | - Sabina Hüseynli
- Biochemistry Division, Department of Chemistry Hacettepe University Ankara 06800 Turkey
| | - Adil Denizli
- Biochemistry Division, Department of Chemistry Hacettepe University Ankara 06800 Turkey
| |
Collapse
|
13
|
Feroz M, Vadgama P. Molecular Imprinted Polymer Modified Electrochemical Sensors for Small Drug Analysis: Progress to Practical Application. ELECTROANAL 2020. [DOI: 10.1002/elan.202060276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Momina Feroz
- Institute of Chemistry University of the Punjab 54590 Lahore Pakistan
| | - Pankaj Vadgama
- School of Engineering and Materials Science Queen Mary University of London Mile End Road London E1 4NS United Kingdom
| |
Collapse
|
14
|
Qiu X, Chen W, Luo Y, Wang Y, Wang Y, Guo H. Highly sensitive α-amanitin sensor based on molecularly imprinted photonic crystals. Anal Chim Acta 2020; 1093:142-149. [DOI: 10.1016/j.aca.2019.09.066] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/03/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023]
|
15
|
Kamel AH, Amr AEGE, Abdalla NS, El-Naggar M, Al-Omar MA, Alkahtani HM, Sayed AYA. Novel Solid-State Potentiometric Sensors Using Polyaniline (PANI) as A Solid-Contact Transducer for Flucarbazone Herbicide Assessment. Polymers (Basel) 2019; 11:polym11111796. [PMID: 31683994 PMCID: PMC6918223 DOI: 10.3390/polym11111796] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/14/2019] [Accepted: 10/23/2019] [Indexed: 11/19/2022] Open
Abstract
Novel potentiometric solid-contact ion-selective electrodes (SC/ISEs) based on molecularly imprinted polymers (MIPs) as sensory carriers (MIP/PANI/ISE) were prepared and characterized as potentiometric sensors for flucarbazone herbicide anion. However, aliquat S 336 was also studied as a charged carrier in the fabrication of Aliquat/PANI/ISEs for flucarbazone monitoring. The polyaniline (PANI) film was inserted between the ion-sensing membrane (ISM) and the electronic conductor glassy carbon substrate (GC). The sensors showed a noticeable response towards flucarbazone anions with slopes of −45.5 ± 1.3 (r2 = 0.9998) and −56.3 ± 1.5 (r2 = 0.9977) mV/decade over the range of 10−2–10−5, 10−2–10−4 M and detection limits of 5.8 × 10−6 and 8.5 × 10−6 M for MIP/PANI/ISE and Aliguat/PANI/ISE, respectively. The selectivity and long-term potential stability of all presented ISEs were investigated. The short-term potential and electrode capacitances were studied and evaluated using chronopotentiometry and electrochemical impedance spectrometry (EIS). The proposed ISEs were introduced for the direct measurement of flucarbazone herbicide in different soil samples sprayed with flucarbazone herbicide. The results agree well with the results obtained using the standard liquid chromatographic method (HPLC).
Collapse
Affiliation(s)
- Ayman H Kamel
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbasia 11566, Cairo, Egypt.
| | - Abd El-Galil E Amr
- Pharmaceutical Chemistry Department, Drug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
- Applied Organic Chemistry Department, National Research Center, Dokki 12622, Giza, Egypt.
| | - Nashwa S Abdalla
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbasia 11566, Cairo, Egypt.
| | - Mohamed El-Naggar
- Chemistry Department, Faculty of Sciences, University of Sharjah, Sharjah 27272, UAE.
| | - Mohamed A Al-Omar
- Pharmaceutical Chemistry Department, Drug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Hamad M Alkahtani
- Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Ahmed Y A Sayed
- Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
16
|
Roland RM, Bhawani SA, Wahi R, Ibrahim MNM. Synthesis, characterization, and application of molecular imprinting polymer for extraction of melamine from spiked milk, water, and blood serum. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1672077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Rachel Marcella Roland
- Faculty of Resource Science and Technology, Department of Chemistry, Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan, Malaysia
| | - Showkat Ahmad Bhawani
- Faculty of Resource Science and Technology, Department of Chemistry, Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan, Malaysia
| | - Rafeah Wahi
- Faculty of Resource Science and Technology, Department of Chemistry, Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan, Malaysia
| | | |
Collapse
|
17
|
Lichtenberg JY, Ling Y, Kim S. Non-Specific Adsorption Reduction Methods in Biosensing. SENSORS (BASEL, SWITZERLAND) 2019; 19:E2488. [PMID: 31159167 PMCID: PMC6603772 DOI: 10.3390/s19112488] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 01/05/2023]
Abstract
Non-specific adsorption (NSA) is a persistent problem that negatively affects biosensors, decreasing sensitivity, specificity, and reproducibility. Passive and active removal methods exist to remedy this issue, by coating the surface or generating surface forces to shear away weakly adhered biomolecules, respectively. However, many surface coatings are not compatible or effective for sensing, and thus active removal methods have been developed to combat this phenomenon. This review aims to provide an overview of methods of NSA reduction in biosensing, focusing on the shift from passive methods to active methods in the past decade. Attention is focused on protein NSA, due to their common use in biosensing for biomarker diagnostics. To our knowledge, this is the first review to comprehensively discuss active NSA removal methods. Lastly, the challenges and future perspectives of NSA reduction in biosensing are discussed.
Collapse
Affiliation(s)
- Jessanne Y Lichtenberg
- Department of Electrical and Computer Engineering, School of Engineering, Baylor University, Waco, TX 76798, USA.
| | - Yue Ling
- Department of Mechanical Engineering, School of Engineering, Baylor University, Waco, TX 76798, USA.
| | - Seunghyun Kim
- Department of Electrical and Computer Engineering, School of Engineering, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|
18
|
Jalilzadeh M, Çimen D, Özgür E, Esen C, Denizli A. Design and preparation of imprinted surface plasmon resonance (SPR) nanosensor for detection of Zn(II) ions. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1617634] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | - Duygu Çimen
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Erdoğan Özgür
- Department of Chemistry, Hacettepe University, Ankara, Turkey
- Department of Chemistry, Aksaray University, Aksaray, Turkey
| | - Cem Esen
- Department of Chemistry, Aydın Adnan Menderes University, Aydın, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
19
|
Hüseynli S, Çimen D, Bereli N, Denizli A. Molecular Imprinted Based Quartz Crystal Microbalance Nanosensors for Mercury Detection. GLOBAL CHALLENGES (HOBOKEN, NJ) 2019; 3:1800071. [PMID: 31565367 PMCID: PMC6436597 DOI: 10.1002/gch2.201800071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/08/2018] [Indexed: 06/10/2023]
Abstract
Mercury(II) ions are emerging as a result of more human activity, especially coal-fired power plants, industrial processes, waste incineration plants, and mining. The mercury found in different forms after spreading around diffuses the nature of other living things. Although the damage to health is not yet clear, it is obvious that it is the cause of many diseases. This work detects the problem of mercury(II) ions, one of the active pollutants in wastewater. For this purpose, it is possible to detect the smallest amount of mercury(II) ions by means of the mercury(II) ions suppressed quartz crystal microbalance nanosensor developed. Zinc(II) and cadmium(II) ions are chosen as competitor elements. Developed nanosensor technology is known as the ideal method in the laboratory environment to detect mercury(II) ions from wastewater because of its low cost and precise result orientation. The range of linearity and the limit of detection are measured as 0.25 × 10-9-50 × 10-9 m. The detection limit is found to be 0.21 × 10-9 m. The mercury(II) ions imprinted nanosensors prepared according to the obtained experimental findings show high selectivity and sensitivity to detect mercury(II) ions from wastewater.
Collapse
Affiliation(s)
- Sabina Hüseynli
- Department of ChemistryHacettepe UniversityBeytepeAnkara06800Turkey
| | - Duygu Çimen
- Department of ChemistryHacettepe UniversityBeytepeAnkara06800Turkey
| | - Nilay Bereli
- Department of ChemistryHacettepe UniversityBeytepeAnkara06800Turkey
| | - Adil Denizli
- Department of ChemistryHacettepe UniversityBeytepeAnkara06800Turkey
| |
Collapse
|
20
|
Xu Z, Deng P, Li J, Tang S, Cui Y. Modification of mesoporous silica with molecular imprinting technology: A facile strategy for achieving rapid and specific adsorption. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:684-693. [DOI: 10.1016/j.msec.2018.10.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/23/2018] [Accepted: 10/05/2018] [Indexed: 12/21/2022]
|
21
|
Li H, Wang Y, Zha H, Dai P, Xie C. Reagentless Electrochemiluminescence Sensor for Triazophos Based on Molecular Imprinting Electropolymerized Poly(Luminol-p-Aminothiophenol) Composite-Modified Gold Electrode. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/s13369-018-3289-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Abbasi Ghaeni F, Karimi G, Mohsenzadeh MS, Nazarzadeh M, Motamedshariaty VS, Mohajeri SA. Preparation of dual-template molecularly imprinted nanoparticles for organophosphate pesticides and their application as selective sorbents for water treatment. SEP SCI TECHNOL 2018. [DOI: 10.1080/01496395.2018.1461112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mohammad Nazarzadeh
- Polymer Division, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Vahideh Sadat Motamedshariaty
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Mohajeri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Gui R, Jin H, Guo H, Wang Z. Recent advances and future prospects in molecularly imprinted polymers-based electrochemical biosensors. Biosens Bioelectron 2018; 100:56-70. [DOI: 10.1016/j.bios.2017.08.058] [Citation(s) in RCA: 262] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/08/2017] [Accepted: 08/27/2017] [Indexed: 01/13/2023]
|
24
|
Nano-optical Biosensors for Assessment of Food Contaminants. SPRINGER SERIES ON POLYMER AND COMPOSITE MATERIALS 2018. [DOI: 10.1007/978-3-319-66417-0_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
25
|
Alizadeh T, Akhoundian M, Ganjali MR. A ferrocene/imprinted polymer nanomaterial-modified carbon paste electrode as a new generation of gate effect-based voltammetric sensor. NEW J CHEM 2018. [DOI: 10.1039/c7nj03396f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a carbon paste electrode, concurrently incorporated with ferrocene and a molecularly imprinted polymer nanomaterial (Fc-MIP-CP electrode), is introduced as an innovative sensing platform for the detection of thiamine.
Collapse
Affiliation(s)
- Taher Alizadeh
- Department of Analytical Chemistry
- Faculty of Chemistry
- University College of Science
- University of Tehran
- Tehran
| | - Maedeh Akhoundian
- Department of Analytical Chemistry
- Faculty of Chemistry
- University College of Science
- University of Tehran
- Tehran
| | - Mohammad Reza Ganjali
- Department of Analytical Chemistry
- Faculty of Chemistry
- University College of Science
- University of Tehran
- Tehran
| |
Collapse
|
26
|
Kibechu RW, Sampath S, Mamba BB, Msagati TAM. Graphene-based molecularly imprinted polymer for separation and pre-concentration of trace polycyclic aromatic hydrocarbons in environmental water samples. J Appl Polym Sci 2017. [DOI: 10.1002/app.45300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Rose Waithiegeni Kibechu
- Department of Applied Chemistry; University of Johannesburg; P.O. Box 17011 Doornfontein Johannesburg 2028 South Africa
- Department of Chemical Engineering; Vaal University of Technology; Vanderbijlpark 1911 South Africa
| | - Srinivasan Sampath
- Inorganic and Physical Chemistry Department; Indian Institute of Science; Bangalore 560 012 Karnataka India
| | - Bhekie Brilliance Mamba
- College of Science Engineering and Technology; The University of South Africa; P.O. Box P/B X6 Roodepoort South Africa
| | - Titus Alfred Makudali Msagati
- College of Science Engineering and Technology; The University of South Africa; P.O. Box P/B X6 Roodepoort South Africa
| |
Collapse
|
27
|
Saylan Y, Yilmaz F, Özgür E, Derazshamshir A, Yavuz H, Denizli A. Molecular Imprinting of Macromolecules for Sensor Applications. SENSORS 2017; 17:s17040898. [PMID: 28422082 PMCID: PMC5426548 DOI: 10.3390/s17040898] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 02/06/2023]
Abstract
Molecular recognition has an important role in numerous living systems. One of the most important molecular recognition methods is molecular imprinting, which allows host compounds to recognize and detect several molecules rapidly, sensitively and selectively. Compared to natural systems, molecular imprinting methods have some important features such as low cost, robustness, high recognition ability and long term durability which allows molecularly imprinted polymers to be used in various biotechnological applications, such as chromatography, drug delivery, nanotechnology, and sensor technology. Sensors are important tools because of their ability to figure out a potentially large number of analytical difficulties in various areas with different macromolecular targets. Proteins, enzymes, nucleic acids, antibodies, viruses and cells are defined as macromolecules that have wide range of functions are very important. Thus, macromolecules detection has gained great attention in concerning the improvement in most of the studies. The applications of macromolecule imprinted sensors will have a spacious exploration according to the low cost, high specificity and stability. In this review, macromolecules for molecularly imprinted sensor applications are structured according to the definition of molecular imprinting methods, developments in macromolecular imprinting methods, macromolecular imprinted sensors, and conclusions and future perspectives. This chapter follows the latter strategies and focuses on the applications of macromolecular imprinted sensors. This allows discussion on how sensor strategy is brought to solve the macromolecules imprinting.
Collapse
Affiliation(s)
- Yeşeren Saylan
- Department of Chemistry, Division of Biochemistry, Hacettepe University, 06800 Ankara, Turkey.
| | - Fatma Yilmaz
- Department of Chemistry Technology, Abant Izzet Baysal University, 14900 Bolu, Turkey.
| | - Erdoğan Özgür
- Department of Chemistry, Division of Biochemistry, Hacettepe University, 06800 Ankara, Turkey.
| | - Ali Derazshamshir
- Department of Chemistry, Division of Biochemistry, Hacettepe University, 06800 Ankara, Turkey.
| | - Handan Yavuz
- Department of Chemistry, Division of Biochemistry, Hacettepe University, 06800 Ankara, Turkey.
| | - Adil Denizli
- Department of Chemistry, Division of Biochemistry, Hacettepe University, 06800 Ankara, Turkey.
| |
Collapse
|
28
|
Yılmaz E, Garipcan B, Patra HK, Uzun L. Molecular Imprinting Applications in Forensic Science. SENSORS 2017; 17:s17040691. [PMID: 28350333 PMCID: PMC5419804 DOI: 10.3390/s17040691] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 01/04/2023]
Abstract
Producing molecular imprinting-based materials has received increasing attention due to recognition selectivity, stability, cast effectiveness, and ease of production in various forms for a wide range of applications. The molecular imprinting technique has a variety of applications in the areas of the food industry, environmental monitoring, and medicine for diverse purposes like sample pretreatment, sensing, and separation/purification. A versatile usage, stability and recognition capabilities also make them perfect candidates for use in forensic sciences. Forensic science is a demanding area and there is a growing interest in molecularly imprinted polymers (MIPs) in this field. In this review, recent molecular imprinting applications in the related areas of forensic sciences are discussed while considering the literature of last two decades. Not only direct forensic applications but also studies of possible forensic value were taken into account like illicit drugs, banned sport drugs, effective toxins and chemical warfare agents in a review of over 100 articles. The literature was classified according to targets, material shapes, production strategies, detection method, and instrumentation. We aimed to summarize the current applications of MIPs in forensic science and put forth a projection of their potential uses as promising alternatives for benchmark competitors.
Collapse
Affiliation(s)
- Erkut Yılmaz
- Department of Biotechnology and Molecular Biology, Aksaray University, 68100 Aksaray, Turkey.
| | - Bora Garipcan
- Institute of Biomedical Engineering, Bogazici University, 34684 Istanbul, Turkey.
| | - Hirak K Patra
- Department of Clinical and Experimental Medicine, Linkoping University, 58225 Linköping, Sweden.
| | - Lokman Uzun
- Department of Chemistry, Hacettepe University, 06381 Ankara, Turkey.
| |
Collapse
|
29
|
Frasco MF, Truta LAANA, Sales MGF, Moreira FTC. Imprinting Technology in Electrochemical Biomimetic Sensors. SENSORS (BASEL, SWITZERLAND) 2017; 17:E523. [PMID: 28272314 PMCID: PMC5375809 DOI: 10.3390/s17030523] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/21/2017] [Accepted: 03/03/2017] [Indexed: 12/14/2022]
Abstract
Biosensors are a promising tool offering the possibility of low cost and fast analytical screening in point-of-care diagnostics and for on-site detection in the field. Most biosensors in routine use ensure their selectivity/specificity by including natural receptors as biorecognition element. These materials are however too expensive and hard to obtain for every biochemical molecule of interest in environmental and clinical practice. Molecularly imprinted polymers have emerged through time as an alternative to natural antibodies in biosensors. In theory, these materials are stable and robust, presenting much higher capacity to resist to harsher conditions of pH, temperature, pressure or organic solvents. In addition, these synthetic materials are much cheaper than their natural counterparts while offering equivalent affinity and sensitivity in the molecular recognition of the target analyte. Imprinting technology and biosensors have met quite recently, relying mostly on electrochemical detection and enabling a direct reading of different analytes, while promoting significant advances in various fields of use. Thus, this review encompasses such developments and describes a general overview for building promising biomimetic materials as biorecognition elements in electrochemical sensors. It includes different molecular imprinting strategies such as the choice of polymer material, imprinting methodology and assembly on the transduction platform. Their interface with the most recent nanostructured supports acting as standard conductive materials within electrochemical biomimetic sensors is pointed out.
Collapse
Affiliation(s)
- Manuela F Frasco
- BioMark-CINTESIS/ISEP, School of Engineering, Polytechnic Institute of Porto, 4200-072 Porto, Portugal.
| | - Liliana A A N A Truta
- BioMark-CINTESIS/ISEP, School of Engineering, Polytechnic Institute of Porto, 4200-072 Porto, Portugal.
| | - M Goreti F Sales
- BioMark-CINTESIS/ISEP, School of Engineering, Polytechnic Institute of Porto, 4200-072 Porto, Portugal.
| | - Felismina T C Moreira
- BioMark-CINTESIS/ISEP, School of Engineering, Polytechnic Institute of Porto, 4200-072 Porto, Portugal.
| |
Collapse
|
30
|
Le VS, Jeong JE, Huynh HT, Lee J, Woo HY. An Ionic 1,4-Bis(styryl)benzene-Based Fluorescent Probe for Mercury(II) Detection in Water via Deprotection of the Thioacetal Group. SENSORS 2016; 16:s16122082. [PMID: 27941624 PMCID: PMC5191063 DOI: 10.3390/s16122082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 11/24/2022]
Abstract
Highly sensitive and selective mercury detection in aqueous media is urgently needed because mercury poisoning usually results from exposure to water-soluble forms of mercury by inhalation and/or ingesting. An ionic conjugated oligoelectrolye (M1Q) based on 1,4-bis(styryl)benzene was synthesized as a fluorescent mercury(II) probe. The thioacetal moiety and quaternized ammonium group were incorporated for Hg2+ recognition and water solubility. A neutral Hg2+ probe (M1) was also prepared based on the same molecular backbone, and their sensor characteristics were investigated in a mixture of acetonitrile/water and in water. In the presence of Hg2+, the thioacetal group was converted to aldehyde functionality, and the resulting photoluminescence intensity decreased. In water, M1Q successfully demonstrated highly sensitive detection, showing a binding toward Hg2+ that was ~15 times stronger and a signal on/off ratio twice as high, compared to M1 in acetonitrile/water. The thioacetal deprotection by Hg2+ ions was substantially facilitated in water without an organic cosolvent. The limit of detection was measured to be 7 nM with a detection range of 10–180 nM in 100% aqueous medium.
Collapse
Affiliation(s)
- Van Sang Le
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea.
| | - Ji-Eun Jeong
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Huy Tuan Huynh
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea.
| | - Jiae Lee
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| |
Collapse
|
31
|
Xia Q, Yun Y, Li Q, Huang Z, Liang Z. Preparation and characterization of monodisperse molecularly imprinted polymer microspheres by precipitation polymerization for kaempferol. Des Monomers Polym 2016; 20:201-209. [PMID: 29491793 PMCID: PMC5812182 DOI: 10.1080/15685551.2016.1239174] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/18/2016] [Indexed: 11/10/2022] Open
Abstract
A new kind of molecularly imprinted polymer (MIP) microspheres for the selective extraction of kaempferol was prepared by precipitation polymerization using 4-vinylpridine (4-VP) and ethylene glycol dimethacrylate (EDMA) as functional monomer and cross-linker respectively. The synthesis conditions, such as ratios of 4-VP/EDMA and polymerization time were discussed in detail. Results showed that the 2% was the optimal concentration of co-monomers to obtain monodisperse MIP microspheres, the best ratio of 4-VP/EDMA was 1:2, and 24 h was considered as the proper polymerization time. Compared with the MIP agglomeration or coagulum particles, monodisperse MIP microspheres showed the better adsorption capacity: the saturated adsorption capacity of monodisperse MIP microspheres was 7.47 mg g−1, the adsorption equilibrium could be obtained in 30 min. Finally, the adsorption performances of the optimal MIP microspheres were evaluated by kinetic adsorption, adsorption isotherm, and selective adsorption experiments, which indicated that the adsorption mechanism were chemical single layer adsorption and the separation factor was up to 3.91 by comparing with the structure similar compound (quercetin). The MIP microspheres exhibit prospects in the kaempferol efficient and selective separation.
Collapse
Affiliation(s)
- Qiang Xia
- School of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Yanbin Yun
- School of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Qiang Li
- School of Science, Beijing Forestry University, Beijing, China
| | - Zejun Huang
- School of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Zhixia Liang
- School of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| |
Collapse
|
32
|
Uahengo V, Zhang Y, Xiong B, Zhao P, Cai P, Rhyman L, Ramasami P, Hu K, Cheng G. A Fluoro-Chromogenic Sensor Based on Organic Molecular Framework for Cu2+ and F− in Aqueous Soluble DMSO. J Fluoresc 2016; 27:191-197. [DOI: 10.1007/s10895-016-1945-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/03/2016] [Indexed: 01/14/2023]
|
33
|
Zhang Y, Huang S, Xu D, Chen J, Wu Q, He J. Preparation of novel three-dimensionally ordered macroporous molecularly imprinted microspheres and its recognition for proteins. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2016.1182915] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
34
|
Alizadeh T, Azizi S. Graphene/graphite paste electrode incorporated with molecularly imprinted polymer nanoparticles as a novel sensor for differential pulse voltammetry determination of fluoxetine. Biosens Bioelectron 2016; 81:198-206. [PMID: 26946258 DOI: 10.1016/j.bios.2016.02.052] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 10/22/2022]
Abstract
Molecularly imprinted polymer (MIP) nanoparticles including highly selective recognition sites for fluoxetine were synthesized, utilizing precipitation polymerization. Methacrylic acid and vinyl benzene were used as functional monomers. Ethylene glycol dimethacrylate was used as cross-linker agent. The obtained polymeric nanoparticles were incorporated with carbon paste electrode (CPE) in order to construct a fluoxetine selective sensor. The response of the MIP-CP electrode to fluoxetine was remarkably higher than the electrode, modified with the non-imprinted polymer, indicating the excellent efficiency of the MIP sites for target molecule recognition. It was found that the addition of a little amount of graphene, synthesized via modified hummer's method, to the MIP-CP resulted in considerable enhancement in the sensitivity of the electrode to fluoxetine. Also, the style of electrode components mixing, before carbon paste preparation, was demonstrated to be influential factor in the electrode response. Some parameters, affecting sensor response, were optimized and then a calibration curve was plotted. A dynamic linear range of 6×10(-9)-1.0×10(-7)molL(-1) was obtained. The detection limit of the sensor was calculated equal to 2.8×10(-9)molL(-1) (3Sb/m). This sensor was used successfully for fluoxetine determination in the spiked plasma samples as well as fluoxetine capsules.
Collapse
Affiliation(s)
- Taher Alizadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran.
| | - Sorour Azizi
- Department of Applied Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Daneshgah Street, P.B179, 56199-11367 Ardabil, Iran
| |
Collapse
|
35
|
Gao P, Hunter A, Benavides S, Summe MJ, Gao F, Phillip WA. Template Synthesis of Nanostructured Polymeric Membranes by Inkjet Printing. ACS APPLIED MATERIALS & INTERFACES 2016; 8:3386-3395. [PMID: 26785390 DOI: 10.1021/acsami.5b11360] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The fabrication of functional nanomaterials with complex structures has been serving great scientific and practical interests, but current fabrication and patterning methods are generally costly and laborious. Here, we introduce a versatile, reliable, and rapid method for fabricating nanostructured polymeric materials. The novel method is based on a combination of inkjet printing and template synthesis, and its utility and advantages in the fabrication of polymeric nanomaterials is demonstrated through three examples: the generation of polymeric nanotubes, nanowires, and thin films. Layer-by-layer-assembled nanotubes can be synthesized in a polycarbonate track-etched (PCTE) membrane by printing poly(allylamine hydrochloride) and poly(styrenesulfonate) sequentially. This sequential deposition of polyelectrolyte ink enables control over the surface charge within the nanotubes. By a simple change of the printing conditions, polymeric nanotubes or nanowires were prepared by printing poly(vinyl alcohol) in a PCTE template. In this case, the high-throughput nature of the method enables functional nanomaterials to be generated in under 3 min. Furthermore, we demonstrate that inkjet printing paired with template synthesis can be used to generate patterns comprised of chemically distinct nanomaterials. Thin polymeric films of layer-by-layer-assembled poly(allylamine hydrochloride) and poly(styrenesulfonate) are printed on a PCTE membrane. Track-etched membranes covered with the deposited thin films reject ions and can potentially be utilized as nanofiltration membranes. When the fabrication of these different classes of nanostructured materials is demonstrated, the advantages of pairing template synthesis with inkjet printing, which include fast and reliable deposition, judicious use of the deposited materials, and the ability to design chemically patterned surfaces, are highlighted.
Collapse
Affiliation(s)
- Peng Gao
- Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Aaron Hunter
- Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Sherwood Benavides
- Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Mark J Summe
- Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Feng Gao
- Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - William A Phillip
- Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, United States
| |
Collapse
|
36
|
Zhang X, Shi F, Jiang J. A new simple extraction method for the extraction of hesperitin from wastewater. NEW J CHEM 2016. [DOI: 10.1039/c6nj01840h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The HES-MMIPs presented good extraction activity, selection and reusability in the extraction of hesperitin from wastewater.
Collapse
Affiliation(s)
- Xian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- P. R. China
| | - Fengqiong Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- P. R. China
| | - Jinhui Jiang
- School of Physics
- Huazhong University of Science and Technology
- Wuhan 430074
- P. R. China
| |
Collapse
|
37
|
Tang Y, Yao Y, yang X, Zhu T, Huang Y, Chen H, Wang Y, Mi H. Well-defined nanostructured surface-imprinted polymers for the highly selective enrichment of low-abundance protein in mammalian cell extract. NEW J CHEM 2016. [DOI: 10.1039/c6nj01500j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new approach for the adsorption and enrichment of natural low-abundance protein by using nanostructured surface-imprinted polymers is presented.
Collapse
Affiliation(s)
- Yating Tang
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
| | - Yanhuan Yao
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
| | - Xingxing yang
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
| | - Ting Zhu
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
| | - Yapeng Huang
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
| | - Haiyang Chen
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
| | - Ying Wang
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
| | - Huaifeng Mi
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
38
|
Colorimetric test-systems based on molecular imprinted polymer for detection of toxic substances. Polym J 2015. [DOI: 10.15407/polymerj.37.04.396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Jaiswal L, Rakkit S, Pochin K, Jaisamut P, Tanthana C, Tanmanee N, Srichana T, Suedee R. A thalidomide templated molecularly imprinted polymer that promotes a biologically active chiral entity tagged in colon carcinoma cells and protein-related immune activation. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Zhang Y, Huang S, Qian C, Wu Q, He J. Preparation of cinchonine molecularly imprinted photonic crystal film and its specific recognition and optical responsive properties. J Appl Polym Sci 2015. [DOI: 10.1002/app.43191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yanan Zhang
- School of Chinese Materia Medica; Guangzhou University of Chinese Medicine; Guangzhou 510006 China
| | - Shaomei Huang
- School of Chinese Materia Medica; Guangzhou University of Chinese Medicine; Guangzhou 510006 China
| | - Chuntong Qian
- School of Chinese Materia Medica; Guangzhou University of Chinese Medicine; Guangzhou 510006 China
| | - Quanzhou Wu
- School of Chinese Materia Medica; Guangzhou University of Chinese Medicine; Guangzhou 510006 China
| | - Jianfeng He
- School of Chinese Materia Medica; Guangzhou University of Chinese Medicine; Guangzhou 510006 China
| |
Collapse
|
41
|
A novel strategy to improve the sensitivity of antibiotics determination based on bioelectrocatalysis at molecularly imprinted polymer film electrodes. Biosens Bioelectron 2015; 73:214-220. [DOI: 10.1016/j.bios.2015.06.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 12/31/2022]
|
42
|
Liu Q, Feng Y, Huang S, Wu Q, He J. Preparation of ordered macroporous cinchonine molecularly imprinted polymers and comparative study of their structure and binding properties with traditional bulk molecularly imprinted polymers. POLYM INT 2015. [DOI: 10.1002/pi.4957] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Qin Liu
- School of Chinese Materia Medica; Guangzhou University of Chinese Medicine; Guangzhou 510006 China
| | - Yonggang Feng
- School of Chinese Materia Medica; Guangzhou University of Chinese Medicine; Guangzhou 510006 China
| | - Shaomei Huang
- School of Chinese Materia Medica; Guangzhou University of Chinese Medicine; Guangzhou 510006 China
| | - Quanzhou Wu
- School of Chinese Materia Medica; Guangzhou University of Chinese Medicine; Guangzhou 510006 China
| | - Jianfeng He
- School of Chinese Materia Medica; Guangzhou University of Chinese Medicine; Guangzhou 510006 China
| |
Collapse
|
43
|
Wei X, Zhou Z, Hao T, Xu Y, Li H, Lu K, Dai J, Zheng X, Gao L, Wang J, Yan Y, Zhu Y. Specific recognition and fluorescent determination of aspirin by using core-shell CdTe quantum dot-imprinted polymers. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1463-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
44
|
Zhang X, Yang S, Zhao W, Liu B, Sun L, Luo A. Surface Molecular Imprinting on Manganese-Doped Zinc Sulfide Quantum Dots for Fluorescence Detection of Bisphenol A in Water. ANAL LETT 2015. [DOI: 10.1080/00032719.2015.1010121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
LI SP, GUAN HM, XU GB, TONG YJ. Progress in Molecular Imprinting Electrochemiluminescence Analysis. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1016/s1872-2040(15)60805-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Whitcombe MJ, Kirsch N, Nicholls IA. Molecular imprinting science and technology: a survey of the literature for the years 2004-2011. J Mol Recognit 2014; 27:297-401. [PMID: 24700625 DOI: 10.1002/jmr.2347] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/28/2013] [Accepted: 12/01/2013] [Indexed: 12/11/2022]
Abstract
Herein, we present a survey of the literature covering the development of molecular imprinting science and technology over the years 2004-2011. In total, 3779 references to the original papers, reviews, edited volumes and monographs from this period are included, along with recently identified uncited materials from prior to 2004, which were omitted in the first instalment of this series covering the years 1930-2003. In the presentation of the assembled references, a section presenting reviews and monographs covering the area is followed by sections describing fundamental aspects of molecular imprinting including the development of novel polymer formats. Thereafter, literature describing efforts to apply these polymeric materials to a range of application areas is presented. Current trends and areas of rapid development are discussed.
Collapse
|
47
|
Moret J, Moreira FT, Almeida SA, Sales MGF. New molecularly-imprinted polymer for carnitine and its application as ionophore in potentiometric selective membranes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 43:481-7. [DOI: 10.1016/j.msec.2014.07.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/23/2014] [Accepted: 07/15/2014] [Indexed: 11/26/2022]
|
48
|
Prasad BB, Jauhari D, Tiwari MP. Doubly imprinted polymer nanofilm-modified electrochemical sensor for ultra-trace simultaneous analysis of glyphosate and glufosinate. Biosens Bioelectron 2014; 59:81-8. [PMID: 24704689 DOI: 10.1016/j.bios.2014.03.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/20/2014] [Accepted: 03/03/2014] [Indexed: 10/25/2022]
Abstract
A rapid, selective, and sensitive double-template imprinted polymer nanofilm-modified pencil graphite electrode was fabricated for the simultaneous analysis of phosphorus-containing amino acid-type herbicides (glyphosate and glufosinate) in soil and human serum samples. Since both herbicides respond overlapped oxidation peaks and only glyphosate is prone to nitrosation, n-nitroso glyphosate and glufosinate were used as templates for obtaining the well-resolved quantitative differential pulse anodic stripping voltammetric peaks on the proposed sensor. Toward sensor fabrication, a nano-structured polymer film was first grown directly on the electrode via initial immobilization of gold nanoparticles at its surface. This was followed by linking of monomeric (N-methacryloyl-l-cysteine) molecules through S-Au bonds. Subsequently, these molecules were subjected to free radical polymerization, in the presence of templates, cross linker, initiator, and multiwalled carbon nanotubes as pre-polymer mixture. The modified sensor observed wide linear ranges (3.98-176.23 ng mL(-1) and 0.54-3.96 ng mL(-1)) of simultaneous analysis with detection limits as low as 0.35 and 0.19 ng mL(-1) (S/N=3) for glyphosate and glufosinate, respectively, in aqueous samples. The respective oxidation peak potentials of both analytes were found to be substantially apart by 265 mV. This enabled the simultaneous determination of one target in the presence of other, without any cross reactivity, interferences, and false-positives, in real samples.
Collapse
Affiliation(s)
- Bhim Bali Prasad
- Analytical Division, Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Darshika Jauhari
- Analytical Division, Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India
| | - Mahavir Prasad Tiwari
- Analytical Division, Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
49
|
Synthesis of nano-sized arsenic-imprinted polymer and its use as As3+ selective ionophore in a potentiometric membrane electrode: Part 1. Anal Chim Acta 2014; 843:7-17. [DOI: 10.1016/j.aca.2014.06.052] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 06/19/2014] [Indexed: 11/20/2022]
|
50
|
Synthesis and adsorption properties of carbamazepine imprinted polymer by dispersion polymerization in supercritical carbon dioxide. KOREAN J CHEM ENG 2014. [DOI: 10.1007/s11814-014-0178-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|