1
|
Orman E, Bekoe SO, Asare-Nkansah S, Kralisch I, Jato J, Spiegler V, Agyare C, Bekoe EO, Hensel A. Towards the development of analytical monograph specifications for the quality assessment of the medicinal plant Phyllanthus urinaria. PHYTOCHEMISTRY 2023; 215:113854. [PMID: 37716546 DOI: 10.1016/j.phytochem.2023.113854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023]
Abstract
Many people in developing countries rely on herbal remedies for their primary healthcare needs. The challenge however is that several of these products lack proper documentation of quality and safety. To ensure consistent quality, validated methods are needed to establish and control quality attributes associated with identity, purity, and levels of bioactive constituents of the respective herbal materials. The present study focused on Phyllanthus urinaria (PU), a widely used medicinal plant in Ghana and West Africa that lacks the necessary quality control standards. The study aimed to develop an HPTLC identification method, which together with UPLC-ESI-Q-TOF-MS/MS analysis established the identity of PU samples and differentiated PU from other closely related Phyllanthus species. Quantitative UPLC and HPTLC methods were developed to assess the contents of selected active markers in the PU samples, which invariably led to the proposal of acceptance criteria for the active markers. Prior to the content analyses, the sample extraction procedure was optimized through the use of Design of Experiment method. The effects of harvest time and geographic origin on the content of active compounds were demonstrated in the investigations. PU samples were also found to be contaminated with higher levels of pesticides like chlorpyrifos and folpet. Essentially, this study provides analytical protocols, insights into the quality status of PU samples in Ghana, and analytical specifications contained in a drafted monograph for future consideration in regional and subregional African pharmacopoeias.
Collapse
Affiliation(s)
- Emmanuel Orman
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, Münster, Germany; Department of Pharmaceutical Chemistry, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana; Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Samuel Oppong Bekoe
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Samuel Asare-Nkansah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Ina Kralisch
- Chemical and Veterinary Inspection Office, Münsterland-Emscher-Lippe (CVUA-MEL) - AöR, Joseph-König-Str. 40, Münster, Germany.
| | - Jonathan Jato
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, Münster, Germany; Department of Pharmacognosy and Herbal Medicine, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana.
| | - Verena Spiegler
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, Münster, Germany.
| | - Christian Agyare
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Emelia Oppong Bekoe
- Department of Pharmacognosy and Herbal Medicine, School of Pharmacy, University of Ghana, Legon, Ghana.
| | - Andreas Hensel
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, Münster, Germany.
| |
Collapse
|
2
|
The Problem of Antimalarial-Drug Abuse by the Inhabitants of Ghana. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020257. [PMID: 36837460 PMCID: PMC9960956 DOI: 10.3390/medicina59020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/08/2023] [Accepted: 01/22/2023] [Indexed: 01/31/2023]
Abstract
Introduction: Malaria is still a huge social and economic health problem in the world. It especially affects the developing countries of Africa. A particular problem is the misuse and abuse of over-the-counter antimalarials. This problem could lead to the emergence of drug-resistant strains and the subsequent elimination of more antimalarials from the list of effective antimalarials in Ghana. Methods: During the implementation of the study, an original questionnaire was used to collect data among Ghanaians on their knowledge of malaria, attitude towards antimalarials and their use of antimalarials. Results: The proportion in the analyzed subgroups was compared using the chi-square test. The analysis was conducted using TIBCO Software Inc., Krakow, Poland (2017) and Statistica (data analysis software system), version 13. In total, 86.29% of respondents knew the symptoms of malaria (p = 0.02) and 57.2% knew the cause of malaria (p < 0.001). Respondents with higher education were significantly more likely to know the symptoms of malaria (96%) p < 0.001. In the study group, only 74.59% of the respondents consulted medical personnel before taking the antimalarial drug (p = 0.51) and only 14.2% of the remaining respondents performed a rapid diagnostic test for malaria. Conclusions: The awareness of Accra and Yendi native inhabitants about the causes and symptoms of malaria and alternative ways of prevention is quite high. People's education very significantly influences the way Accra residents deal with suspected malaria. Widespread public education and awareness and accessibility to places where antimalarial drugs are sold play a very important role in the proper use of antimalarial drugs.
Collapse
|
3
|
Development and Validation of an Ion-Pair HPLC-UV Method for the Quantitation of Quinoline and Indoloquinoline Alkaloids in Herbal and Pharmaceutical Antimalarial Formulations. J CHEM-NY 2022. [DOI: 10.1155/2022/4625954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Quinine- and cryptolepine-based antimalarials serve as valuable alternatives to artemisinin-based combination therapies (ACTs) in Ghana. Their use, however, is associated with adulteration and substandard quality challenges. An HPLC method targeting quinoline and indoloquinoline antimalarial alkaloids was developed, validated, and applied to evaluate herbal and pharmaceutical antimalarial formulations (HPAFs) and starting materials (APIs). The separation/quantitation of the alkaloids (including quinine, quinidine, cinchonine, cinchonidine, dihydroquinine, dihydroquinidine, and cryptolepine) was achieved on a Zorbax SB-CN column (250 mm × 4.6 mm, 5 μm), with an isocratic elution system of methanol: trifluoroacetic acid (0.1%, v/v) (15 : 85, v/v) at 1.5 mL/min and 223 nm. Method validation was according to ICH Q2(R1) guidelines. It was then used to assess the quality of APIs (n = 3) and HPAFs (n = 44) including quinine-based pharmaceutical antimalarial formulations (QBPAFs) (n = 23) and herbal antimalarial products (HAMPs). The method was found to be specific, selective, accurate, precise, and robust toward the alkaloids with linearity achieved within specified concentration ranges (r2 > 0.995 for all analytes). Analyte stability ranged between 6 and 12 hours. All the APIs contained quinine <99.0%–101.0%, with dihydroquinine and cinchonidine at levels compliant with the established acceptance criteria. The QBPAFs had quinine content ranging between 50.2% and 151.2%, with 43.5% (n = 10/23) of them complying with the acceptance criteria. The related alkaloids observed in the QBPAFs included quinidine (56.5%, n = 13/23), dihydroquinine (100%, n = 23/23), dihydroquinidine (21.7%, n = 5/23), cinchonine (17.4%, n = 4/23), and cinchonidine (95.7%, n = 22/23). For the HAMPs, 81.0% (n = 17/21) were adulterated with quinine (0.59 ± 0.04 mg/10 mL–86.03 ± 0.02 mg/10 mL). Cryptolepine was identified in 19% (n = 4/21) of the HAMPs with concentration ranging between 43.99 ± 0.43 μg/mL and 747.86 ± 0.34 μg/mL. In conclusion, the application of the ion-pair HPLC method targeting quinoline and indoloquinoline antimalarials has demonstrated the presence of quality and poor-quality HPAFs on the Ghanaian market.
Collapse
|