1
|
Cebani L, Mvubu NE. Can We Exploit Inflammasomes for Host-Directed Therapy in the Fight against Mycobacterium tuberculosis Infection? Int J Mol Sci 2024; 25:8196. [PMID: 39125766 PMCID: PMC11311975 DOI: 10.3390/ijms25158196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tb), is a major global health issue, with around 10 million new cases annually. Advances in TB immunology have improved our understanding of host signaling pathways, leading to innovative therapeutic strategies. Inflammasomes, protein complexes organized by cytosolic pattern recognition receptors (PRRs), play a crucial role in the immune response to M. tb by activating caspase 1, which matures proinflammatory cytokines IL1β and IL18. While inflammation is necessary to fight infection, excessive or dysregulated inflammation can cause tissue damage, highlighting the need for precise inflammasome regulation. Drug-resistant TB strains have spurred research into adjunctive host-directed therapies (HDTs) that target inflammasome pathways to control inflammation. Canonical and non-canonical inflammasome pathways can trigger excessive inflammation, leading to immune system exhaustion and M. tb spread. Novel HDT interventions can leverage precision medicine by tailoring treatments to individual inflammasome responses. Studies show that medicinal plant derivatives like silybin, andrographolide, and micheliolide and small molecules such as OLT1177, INF39, CY-09, JJ002, Ac-YVAD-cmk, TAK-242, and MCC950 can modulate inflammasome activation. Molecular tools like gene silencing and knockouts may also be used for severe TB cases. This review explores these strategies as potential adjunctive HDTs in fighting TB.
Collapse
Affiliation(s)
| | - Nontobeko E. Mvubu
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
| |
Collapse
|
2
|
Vishaka S, Sridevi G, Selvaraj J. An in vitro analysis on the antioxidant and anti-diabetic properties of Kaempferia galanga rhizome using different solvent systems. J Adv Pharm Technol Res 2022; 13:S505-S509. [PMID: 36798576 PMCID: PMC9926592 DOI: 10.4103/japtr.japtr_189_22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/02/2022] [Accepted: 09/21/2022] [Indexed: 02/18/2023] Open
Abstract
Kaempferia galanga rhizome (KGR) is a stemless, sweet-smelling, enduring, and rhizomatous monocotyledonous plant of the ginger family also called sand ginger or kencur. lt possesses many pharmacological effects and the goal of this study is to use several solvent solutions to determine the antioxidant and anti-diabetic potential of KGR. By observing KGR's alpha-glucosidase and alpha-amylase inhibitory activity, the in vitro diabetic activity was assessed. The in vitro cancer preventive action was evaluated by doing the 2,2-diphenyl-1-picrylhydrazyl test. The outcomes of the study showed increase in dose-dependent percentage of inhibition in α-amylase and α-glucosidase activity for both extract and standard ranging from 100 to 500 μg/ml. The current review proposes that the concentrate of KGR could be utilized for the treatment of diabetes mellitus as well with respect to dealing with the oxidative stress-related diseases.
Collapse
Affiliation(s)
- S. Vishaka
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - G. Sridevi
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India,Address for correspondence: Dr. G. Sridevi, Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai - 600 077, Tamil Nadu, India. E-mail:
| | - J. Selvaraj
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
3
|
Phytochemical Analysis, Antioxidant, Antimicrobial, and Anti-Swarming Properties of Hibiscus sabdariffa L. Calyx Extracts: In Vitro and In Silico Modelling Approaches. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1252672. [PMID: 35646135 PMCID: PMC9142284 DOI: 10.1155/2022/1252672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 01/18/2023]
Abstract
The aim of this study was to investigate the phytochemical composition of dried Roselle calyx (Hibiscus sabdariffa L.) using both ethanolic and aqueous extracts. We report the antimicrobial activities against a wide range of bacteria, yeast, and fungi. The antioxidant activities were tested using 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl, and 2–2′-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid) radical scavenging assays. We report also for the first time the effect of the swarming motility in Pseudomonas aeruginosa PAO1. Our results showed that the tested two extracts were a rich source of phenols, flavonoids, and tannins with different degrees. Additionally, eleven phytoconstituents were identified by LC/MS technique (Hibiscus acid: 3-caffeoylquinic acid, 5-caffeoylquinic acid, 5-feruloylquinic acid, cyanidin 3-o-glucoside, myricetin, quercetin 7-o-rutinoside, quercetin 3-o-glucoside, delphinidin 3-o-sambubioside, and kaempferol 3-o-p-coumaroyl-glucoside). Also, it was shown that the calyx extract can scavenge 86% of the DPPH radical, while the rate of 53% and 23% of inhibition of the DPPH was obtained only at the concentration of 125 and 50 µg/mL, and a small inhibition was made at a concentration of 5 μg/mL. Roselle extracts inhibited the growth of the selected microorganisms at low concentrations, while higher concentrations are needed to completely kill them. However, no activity against CVB-3 was recorded for both extracts. In addition, the obtained extracts reduced the swarming motility of P. aeruginosa at 2.5 mg/ml. The docking simulation showed acceptable binding affinities (up to −9.6 kcal/mol) and interaction with key residues of 1JIJ, 2QZW, and 2UVO. The obtained results highlighted the potential use of Roselle extract as a source of phytoconstituents with promising antimicrobial, antioxidant, and anti-quorum sensing activities.
Collapse
|
4
|
Potential Anti- Mycobacterium tuberculosis Activity of Plant Secondary Metabolites: Insight with Molecular Docking Interactions. Antioxidants (Basel) 2021; 10:antiox10121990. [PMID: 34943093 PMCID: PMC8750514 DOI: 10.3390/antiox10121990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) is a recurrent and progressive disease, with high mortality rates worldwide. The drug-resistance phenomenon of Mycobacterium tuberculosis is a major obstruction of allelopathy treatment. An adverse side effect of allelopathic treatment is that it causes serious health complications. The search for suitable alternatives of conventional regimens is needed, i.e., by considering medicinal plant secondary metabolites to explore anti-TB drugs, targeting the action site of M. tuberculosis. Nowadays, plant-derived secondary metabolites are widely known for their beneficial uses, i.e., as antioxidants, antimicrobial agents, and in the treatment of a wide range of chronic human diseases (e.g., tuberculosis), and are known to “thwart” disease virulence. In this regard, in silico studies can reveal the inhibitory potential of plant-derived secondary metabolites against Mycobacterium at the very early stage of infection. Computational approaches based on different algorithms could play a significant role in screening plant metabolites against disease virulence of tuberculosis for drug designing.
Collapse
|
5
|
Tong ZW, Gul H, Awais M, Saddick S, Khan FS, Gulfraz M, Afzal U, Nazir K, Malik MY, Khan SU, Khan MI. Determination of in vivo biological activities of Dodonaea viscosa flowers against CCL 4 toxicity in albino mice with bioactive compound detection. Sci Rep 2021; 11:13336. [PMID: 34172756 PMCID: PMC8233356 DOI: 10.1038/s41598-021-92638-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
Dodonaea viscosa L.Jacq. is an evergreen shrub and native to Asia, Africa, and Australia. It has been used as traditional medicine in different countries. The foremost objective of the current study was to discover the protective potential of D. viscosa flowers Methanol (DVM) and Chloroform (DVC) extracts against CCL4 induced toxicity in mice. This study was intended to identify phytochemicals through HPLC, GCMS, and FT-IR, as well as in vitro antioxidant and in vitro anti-tuberculosis activity. Our comprehensive findings indicate that Dodonaea viscosa is valuable and widespread herbal medicine through therapeutic potentials for curing various ailments. Dodonaeaviscosa flowersare found to have a protective effect against oxidative stress produced by CCL4 in the liver, kidney, and spleen. The intake of DV extracts restored the level of hepatic enzymes (ALP, AST ALT, and Direct bilirubin), hematological parameters (RBCs, WBCs, and Platelets), total protein, and liver antioxidant enzymes (SOD, GPx, and CAT) after a decline in levels by CCL4. Histopathological results discovered the defensive effect of 300 mg/kg of DVM extract against CCL4 induced damage, thus having an improved protective effect compared to DVC and control. As a result of metabolite screening, the total flavonoids and total phenolics were present in abundance. A phytochemical investigation by HPLC identified gallic acid, epicatechin, cumeric acid, flavonoids, while GCMS estimated oleic acid (Octadecenoic acid) (C18H34O2), Stearic acid (C18H36O2), Ricinoleic acid (C18H34O3), and Cedrol (C15H26O). DVM extract exhibited resistance against in vitro Mycobacterium tuberculosis strains. So this study proposed that the protective effect of DV against oxidative damage induced in the liver, kidney, and spleen can be correlated to the antioxidant compounds.
Collapse
Affiliation(s)
- Zhao-Wei Tong
- grid.413679.e0000 0004 0517 0981Department of Infectious Diseases, Huzhou Central Hospital, Zhejiang, 313000 Huzhou People’s Republic of China
| | - Hina Gul
- University Institute of Biochemistry and Biotechnology (UIBB), PMAS UAAR Rawalpindi, Rawalpindi, Pakistan
| | - Muhammad Awais
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Sialkot, Sialkot, Pakistan
| | - Salina Saddick
- grid.412125.10000 0001 0619 1117Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589 Kingdom of Saudi Arabia
| | - Falak Sher Khan
- Department of Biotechnology, University of Sialkot, Sialkot, Pakistan
| | - Muhammad Gulfraz
- University Institute of Biochemistry and Biotechnology (UIBB), PMAS UAAR Rawalpindi, Rawalpindi, Pakistan
| | - Umara Afzal
- Department of Chemistry, Rawalpindi Women University, Satellite Town, Rawalpindi, Pakistan
| | - Khizar Nazir
- grid.442867.b0000 0004 0401 3861Department of Biosciences, University of Wah, Wah Cantt, 47040 Pakistan
| | - M. Y. Malik
- grid.412144.60000 0004 1790 7100Department of Mathematics, College of Sciences, King Khalid University, Abha, 61413 Kingdom of Saudi Arabia
| | - Sami Ullah Khan
- grid.418920.60000 0004 0607 0704Department of Mathematics, COMSATS University Islamabad, Sahiwal, 57000 Pakistan
| | - M. Ijaz Khan
- grid.414839.30000 0001 1703 6673Department of Mathematics and Statistics, Riphah International University, I-14, Islamabad, 44000 Pakistan
| |
Collapse
|
6
|
Sarangi A, Das BS, Patnaik G, Sarkar S, Debnath M, Mohan M, Bhattacharya D. Potent anti-mycobacterial and immunomodulatory activity of some bioactive molecules of Indian ethnomedicinal plants that have the potential to enter in TB management. J Appl Microbiol 2021; 131:1578-1599. [PMID: 33772980 DOI: 10.1111/jam.15088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 03/01/2021] [Accepted: 03/23/2021] [Indexed: 11/26/2022]
Abstract
Tuberculosis (TB) is one of the deadliest infectious diseases of human civilization. Approximately one-third of global population is latently infected with the TB pathogen Mycobacterium tuberculosis (M.tb). The discovery of anti-TB antibiotics leads to decline in death rate of TB. However, the evolution of antibiotic-resistant M.tb-strain and the resurgence of different immune-compromised diseases re-escalated the death rate of TB. WHO has already cautioned about the chances of pandemic situation in TB endemic countries until the discovery of new anti-tubercular drugs, that is, the need of the hour. Analysing the pathogenesis of TB, it was found that M.tb evades the host by altering the balance of immune response and affects either by killing the cells or by creating inflammation. In the pre-antibiotic era, traditional medicines were only therapeutic measures for different infectious diseases including tuberculosis. The ancient literatures of India or ample Indian traditional knowledge and ethnomedicinal practices are evidence for the treatment of TB using different indigenous plants. However, in the light of modern scientific approach, anti-TB effects of those plants and their bioactive molecules were not established thoroughly. In this review, focus has been given on five bioactive molecules of different traditionally used Indian ethnomedicinal plants for treatment of TB or TB-like symptom. These compounds are also validated with proper identification and their mode of action with modern scientific approaches. The effectiveness of these molecules for sensitive or drug-resistant TB pathogen in clinical or preclinical studies was also evaluated. Thus, our specific aim is to highlight such scientifically validated bioactive compounds having anti-mycobacterial and immunomodulatory activity for future use as medicine or adjunct-therapeutic molecule for TB management.
Collapse
Affiliation(s)
- A Sarangi
- Centre for Biotechnology, School of Pharmaceutical Sciences, SOA Deemed to be University, Bhubaneswar, Odisha, India
| | - B S Das
- Centre for Biotechnology, School of Pharmaceutical Sciences, SOA Deemed to be University, Bhubaneswar, Odisha, India
| | - G Patnaik
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - S Sarkar
- Barsal High School, Rampurhat, West Bengal, India
| | - M Debnath
- Panskura Banamali College (Autonomous), Vidyasagar University, Panskura, West Bengal, India
| | - M Mohan
- ICMR-National Institute of Malarial Research (NIMR), New Delhi, India
| | - D Bhattacharya
- Centre for Biotechnology, School of Pharmaceutical Sciences, SOA Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|
7
|
Sieniawska E, Maciejewska-Turska M, Świątek Ł, Xiao J. Plant-based Food Products for Antimycobacterial Therapy. EFOOD 2020. [DOI: 10.2991/efood.k.200418.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
8
|
Elshamy AI, Mohamed TA, Essa AF, Abd-ElGawad AM, Alqahtani AS, Shahat AA, Yoneyama T, Farrag ARH, Noji M, El-Seedi HR, Umeyama A, Paré PW, Hegazy MEF. Recent Advances in Kaempferia Phytochemistry and Biological Activity: A Comprehensive Review. Nutrients 2019; 11:nu11102396. [PMID: 31591364 PMCID: PMC6836233 DOI: 10.3390/nu11102396] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Plants belonging to the genus Kaempferia (family: Zingiberaceae) are distributed in Asia, especially in the southeast region, and Thailand. They have been widely used in traditional medicines to cure metabolic disorders, inflammation, urinary tract infections, fevers, coughs, hypertension, erectile dysfunction, abdominal and gastrointestinal ailments, asthma, wounds, rheumatism, epilepsy, and skin diseases. Objective: Herein, we reported a comprehensive review, including the traditional applications, biological and pharmacological advances, and phytochemical constituents of Kaempheria species from 1972 up to early 2019. Materials and methods: All the information and reported studies concerning Kaempheria plants were summarized from library and digital databases (e.g., Google Scholar, Sci-finder, PubMed, Springer, Elsevier, MDPI, Web of Science, etc.). The correlation between the Kaempheria species was evaluated via principal component analysis (PCA) and agglomerative hierarchical clustering (AHC), based on the main chemical classes of compounds. Results: Approximately 141 chemical constituents have been isolated and reported from Kaempferia species, such as isopimarane, abietane, labdane and clerodane diterpenoids, flavonoids, phenolic acids, phenyl-heptanoids, curcuminoids, tetrahydropyrano-phenolic, and steroids. A probable biosynthesis pathway for the isopimaradiene skeleton is illustrated. In addition, 15 main documented components of volatile oils of Kaempheria were summarized. Biological activities including anticancer, anti-inflammatory, antimicrobial, anticholinesterase, antioxidant, anti-obesity-induced dermatopathy, wound healing, neuroprotective, anti-allergenic, and anti-nociceptive were demonstrated. Conclusions: Up to date, significant advances in phytochemical and pharmacological studies of different Kaempheria species have been witnessed. So, the traditional uses of these plants have been clarified via modern in vitro and in vivo biological studies. In addition, these traditional uses and reported biological results could be correlated via the chemical characterization of these plants. All these data will support the biologists in the elucidation of the biological mechanisms of these plants.
Collapse
Affiliation(s)
- Abdelsamed I Elshamy
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
- Chemistry of Natural Compounds Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt.
| | - Tarik A Mohamed
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt.
| | - Ahmed F Essa
- Chemistry of Natural Compounds Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt.
| | - Ahmed M Abd-ElGawad
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Ali S Alqahtani
- Pharmacognosy Department, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Abdelaaty A Shahat
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt.
- Pharmacognosy Department, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Tatsuro Yoneyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| | | | - Masaaki Noji
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| | - Hesham R El-Seedi
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Box 574, SE-75 123 Uppsala, Sweden.
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt.
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Akemi Umeyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| | - Paul W Paré
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| | - Mohamed-Elamir F Hegazy
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt.
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
9
|
Kusuma SAF, Iskandar Y, Dewanti MA. The ethanolic extract of ashitaba stem ( Angelica keskei [Miq.] Koidz) as future antituberculosis. J Adv Pharm Technol Res 2018; 9:37-41. [PMID: 29441323 PMCID: PMC5801586 DOI: 10.4103/japtr.japtr_283_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Considering the easy contagion of tuberculosis (TB) disease spread and the emergence of multidrug-resistant TB, which directly impacts the failure of therapeutic goals and mortality rates increasing, TB disease control remains to be the main concern of continuous health development effort. Therefore, the discovery of new TB drug is needed. This research assessed the new natural anti-TB drug from the ethanolic extract of Angelica keiskei stem obtained from Lombok, Indonesia. The objectives of this study were to evaluate the sensitivity of Mycobacterium tuberculosis (Mtb) H37Rv strain to A. keiskei stem extract and to determine its minimum inhibitory concentration (MIC). The extraction methods of A. keiskei stem were done using a maceration method. In addition to phytochemical screening and water content analysis using standard method, the phytochemical parameters were analyzed by thin-layer chromatography. Ethanolic extract of A. keiskei stem was assayed for their Mtb inhibitory activity using the proportion method. The phytochemical analysis result showed that the secondary metabolites contain in the extract were flavonoid, polyphenol, tannin, monoterpenoid and sesquiterpen, quinon, and saponin. The anti-TB test result showed the active activity of ethanolic extract of A. keiskei against Mtb H37Rv strain with MIC ranging from 6% to 8% w/v. In conclusion, ethanolic extract of A. keiskei is a prospective natural anti-TB for the future.
Collapse
Affiliation(s)
- Sri Agung Fitri Kusuma
- Department of Biology Pharmacy, Faculty of Pharmacy, Padjadjaran University, Jawa Barat, Indonesia
| | - Yoppi Iskandar
- Department of Biology Pharmacy, Faculty of Pharmacy, Padjadjaran University, Jawa Barat, Indonesia
| | - Mutiara Ayu Dewanti
- Department of Biology Pharmacy, Faculty of Pharmacy, Padjadjaran University, Jawa Barat, Indonesia
| |
Collapse
|