1
|
Sidhoum W, Dib S, Alim Y, Anseur S, Benlatreche S, Belaidouni ZM, Chamouma FEZ. Growth-promoting effects of Aspergillus Elegans and the dark septate endophyte (DSE) Periconia macrospinosa on cucumber. Arch Microbiol 2024; 206:226. [PMID: 38642120 DOI: 10.1007/s00203-024-03958-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/10/2024] [Indexed: 04/22/2024]
Abstract
Cucurbits are subject to a variety of stresses that limit their sustainable production, despite their important role in ensuring food security and nutrition. Plant stress tolerance can be enhanced through fungal endophytes. In this study, two endophytes isolated from wild plant roots, were tested to determine their effect on the growth promotion of cucumber (Cucumis sativus L.) plants. The phylogenetic analysis revealed that the designated isolates were Aspergillus elegans and Periconia macrospinosa. The results of the Plant Growth Promoting Fungal (PGPF) tests showed that both Aspergillus elegans and Periconia macrospinosa have a zinc solubilizing capacity, especially A. elegans, with a solubilization index higher than 80%. Also, both have a high salt tolerance (10-15% NaCl for P. macrospinosa and A. elegans, respectively), cellulolytic activity, and inhibition indices of 40-64.53%. A. elegans and P. macrospinosa had antagonistic effects against the cucumber phytopathogenic fungi Verticillium dahliae and Fusarium oxysporum, respectively. However, A. elegans and P. macrospinosa didn't exhibit certain potential plant benefits, such as the production of hydrogen cyanide (HCN) and phosphate solubilization. The chlorophyll content and growth parameters of two-month-old cucumber plants inoculated with the fungal species were significantly better than those of the controls (non-inoculated); the shoot dry weights of inoculated plants were increased by 138% and 170% for A. elegans and P. macrospinosa, respectively; and the root colonization by fungal endophytes has also been demonstrated. In addition to the fact that P. macrospinosa has long been known as PGPF, this is the first time that the ability of A. elegans to modulate host plant growth has been demonstrated, with the potential to be used as a biofertilizer in sustainable agriculture.
Collapse
Affiliation(s)
- Warda Sidhoum
- Laboratoire de Biologie des Microorganismes et Biotechnologie, Faculté des Sciences de la Nature et de la Vie, University Oran 1, Es Senia, 31100, Algerie.
- Département de Biologie, Université de Mostaganem Abdel Hamid Ibn Badis, Mostaganem, 27000, Algerie.
| | - Soulef Dib
- Laboratoire de Biologie des Microorganismes et Biotechnologie, Faculté des Sciences de la Nature et de la Vie, University Oran 1, Es Senia, 31100, Algerie
| | - Yousra Alim
- Laboratoire de Biologie des Microorganismes et Biotechnologie, Faculté des Sciences de la Nature et de la Vie, University Oran 1, Es Senia, 31100, Algerie
| | - Sarra Anseur
- Laboratoire de Biologie des Microorganismes et Biotechnologie, Faculté des Sciences de la Nature et de la Vie, University Oran 1, Es Senia, 31100, Algerie
| | - Sabrina Benlatreche
- Laboratoire de Biologie des Microorganismes et Biotechnologie, Faculté des Sciences de la Nature et de la Vie, University Oran 1, Es Senia, 31100, Algerie
| | | | - Fatiha El Zahra Chamouma
- Département de Biologie, Université de Mostaganem Abdel Hamid Ibn Badis, Mostaganem, 27000, Algerie
| |
Collapse
|
2
|
Phookamsak R, Hongsanan S, Bhat DJ, Wanasinghe DN, Promputtha I, Suwannarach N, Kumla J, Xie N, Dawoud TM, Mortimer PE, Xu J, Lumyong S. Exploring ascomycete diversity in Yunnan II: Introducing three novel species in the suborder Massarineae (Dothideomycetes, Pleosporales) from fern and grasses. MycoKeys 2024; 104:9-50. [PMID: 38665970 PMCID: PMC11040200 DOI: 10.3897/mycokeys.104.112149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/09/2023] [Indexed: 04/28/2024] Open
Abstract
This article presents the results of an ongoing inventory of Ascomycota in Yunnan, China, carried out as part of the research project series "Exploring ascomycete diversity in Yunnan". From over 100 samples collected from diverse host substrates, microfungi have been isolated, identified and are currently being documented. The primary objective of this research is to promote the discovery of novel taxa and explore the ascomycete diversity in the region, utilising a morphology-phylogeny approach. This article represents the second series of species descriptions for the project and introduces three undocumented species found in the families Bambusicolaceae, Dictyosporiaceae and Periconiaceae, belonging to the suborder Massarineae (Pleosporales, Dothideomycetes). These novel taxa exhibit typical morphological characteristics of Bambusicola, Periconia and Trichobotrys, leading to their designation as Bambusicolahongheensis, Periconiakunmingensis and Trichobotryssinensis. Comprehensive multigene phylogenetic analyses were conducted to validate the novelty of these species. The results revealed well-defined clades that are clearly distinct from other related species, providing robust support for their placement within their respective families. Notably, this study unveils the phylogenetic affinity of Trichobotrys within Dictyosporiaceae for the first time. Additionally, the synanamorphism for the genus Trichobotrys is also reported for the first time. Detailed descriptions, illustrations and updated phylogenies of the novel species are provided, and thus presenting a valuable resource for researchers and mycologists interested in the diversity of ascomycetes in Yunnan. By enhancing our understanding of the Ascomycota diversity in this region, this research contributes to the broader field of fungal taxonomy and their phylogenetic understanding.
Collapse
Affiliation(s)
- Rungtiwa Phookamsak
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, 654400, Yunnan Province, China
| | - Sinang Hongsanan
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Darbhe Jayarama Bhat
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Vishnugupta Vishwavidyapeetam, Ashoke, Gokarna 581326, India
| | - Dhanushka N. Wanasinghe
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, 654400, Yunnan Province, China
- CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming 650201, Yunnan Province, China
- Center for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
| | - Itthayakorn Promputtha
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nakarin Suwannarach
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaturong Kumla
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ning Xie
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Turki M. Dawoud
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Peter E. Mortimer
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, 654400, Yunnan Province, China
| | - Jianchu Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, 654400, Yunnan Province, China
- CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming 650201, Yunnan Province, China
| | - Saisamorn Lumyong
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Tsushima S, Nishi Y, Suzuki R, Tachibana M, Kanaly RA, Mori JF. Formation of Biogenic Manganese Oxide Nodules on Hyphae of a New Fungal Isolate of Periconia That Immobilizes Aqueous Copper. Microbes Environ 2024; 39:ME23102. [PMID: 38866480 PMCID: PMC11220447 DOI: 10.1264/jsme2.me23102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/15/2024] [Indexed: 06/14/2024] Open
Abstract
Mn(II)-oxidizing microorganisms are considered to play significant roles in the natural geochemical cycles of Mn and other heavy metals because the insoluble biogenic Mn oxides (BMOs) that are produced by these microorganisms adsorb other dissolved heavy metals and immobilize them as precipitates. In the present study, a new Mn(II)-oxidizing fungal strain belonging to the ascomycete genus Periconia, a well-studied plant-associating fungal genus with Mn(II)-oxidizing activity that has not yet been exami-ned in detail, was isolated from natural groundwater outflow sediment. This isolate, named strain TS-2, was confirmed to oxidize dissolved Mn(II) and produce insoluble BMOs that formed characteristic, separately-located nodules on their hyphae while leaving major areas of the hyphae free from encrustation. These BMO nodules also adsorbed and immobilized dissolved Cu(II), a model analyte of heavy metals, as evidenced by elemental mapping ana-lyses of fungal hyphae-BMO assemblages using a scanning electron microscope with energy-dispersive X-ray spectroscopy (SEM-EDX). Analyses of functional genes within the whole genome of strain TS-2 further revealed the presence of multiple genes predicted to encode laccases/multicopper oxidases that were potentially responsible for Mn(II) oxidation by this strain. The formation of BMO nodules may have functioned to prevent the complete encrustation of fungal hyphae, thereby enabling the control of heavy metal concentrations in their local microenvironments while maintaining hyphal functionality. The present results will expand our knowledge of the physiological and morphological traits of Mn(II)-oxidizing Periconia, which may affect the natural cycle of heavy metals through their immobilization.
Collapse
Affiliation(s)
- Shihori Tsushima
- Graduate School of Nanobioscience, Yokohama City University, Japan
| | - Yuma Nishi
- Graduate School of Nanobioscience, Yokohama City University, Japan
| | - Ryo Suzuki
- Graduate School of Nanobioscience, Yokohama City University, Japan
| | - Masaru Tachibana
- Graduate School of Nanobioscience, Yokohama City University, Japan
| | - Robert A. Kanaly
- Graduate School of Nanobioscience, Yokohama City University, Japan
| | - Jiro F. Mori
- Graduate School of Nanobioscience, Yokohama City University, Japan
| |
Collapse
|
4
|
Tsushima S, Kanaly RA, Mori JF. Whole-genome sequence of Periconia sp. strain TS-2, an ascomycete fungus isolated from a freshwater outflow and capable of Mn(II) oxidation. Microbiol Resour Announc 2023; 12:e0059923. [PMID: 37929943 PMCID: PMC10720502 DOI: 10.1128/mra.00599-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/15/2023] [Indexed: 11/07/2023] Open
Abstract
Members of the genus Periconia are commonly found as plant-associated filamentous fungi. Here, the first draft genome sequence of a new Periconia strain, TS-2, that was isolated from freshwater outflow sediment and possesses the ability to oxidize dissolved Mn(II), was obtained and has an estimated size of 40.7 Mb.
Collapse
Affiliation(s)
- Shihori Tsushima
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Robert A. Kanaly
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Jiro F. Mori
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| |
Collapse
|
5
|
Bhardwaj M, Kailoo S, Khan RT, Khan SS, Rasool S. Harnessing fungal endophytes for natural management: a biocontrol perspective. Front Microbiol 2023; 14:1280258. [PMID: 38143866 PMCID: PMC10748429 DOI: 10.3389/fmicb.2023.1280258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
In the ever-evolving realm of agriculture, the convoluted interaction between plants and microorganisms have assumed paramount significance. Fungal endophytes, once perceived as mere bystanders within plant tissues, have now emerged as dynamic defenders of plant health. This comprehensive review delves into the captivating world of fungal endophytes and their multifaceted biocontrol mechanisms. Exploring their unique ability to coexist with their plant hosts, fungal endophytes have unlocked a treasure trove of biological weaponry to fend off pathogens and enhance plant resilience. From the synthesis of bioactive secondary metabolites to intricate signaling pathways these silent allies are masters of biological warfare. The world of fungal endophytes is quite fascinating as they engage in a delicate dance with the plant immune system, orchestrating a symphony of defense that challenges traditional notions of plant-pathogen interactions. The journey through the various mechanisms employed by these enigmatic endophytes to combat diseases, will lead to revelational understanding of sustainable agriculture. The review delves into cutting-edge research and promising prospects, shedding light on how fungal endophytes hold the key to biocontrol and the reduction of chemical inputs in agriculture. Their ecological significance, potential for bioprospecting and avenues for future research are also explored. This exploration of the biocontrol mechanisms of fungal endophytes promise not only to enrich our comprehension of plant-microbe relationships but also, to shape the future of sustainable and ecofriendly agricultural practices. In this intricate web of life, fungal endophytes are indeed the unsung heroes, silently guarding our crops and illuminating a path towards a greener, healthier tomorrow.
Collapse
Affiliation(s)
| | | | | | | | - Shafaq Rasool
- Molecular Biology Laboratory, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| |
Collapse
|
6
|
Azhari A, Naini AA, Harneti D, Wulandari AP, Mulyani Y, Purbaya S, Sari AP, Pratama GB, Anwar R, Fajar M, Abdullah FF, Farabi K, Supratman U. New steroid produced by Periconia pseudobyssoides K5 isolated from Toona sureni (Meliaceae) and its heme polymerization inhibition activity. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2023; 25:1117-1124. [PMID: 37017205 DOI: 10.1080/10286020.2023.2195105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
A new ergostane-type steroid named (22E)-3α,6α,9α-ergosta-7,22-diene-3,6,9-triol (1), along with six known steroids 5α,8α-epidioxy-24-ethyl-cholest-6-en-3β-ol (2), ergosterol-5,8-peroxide (3), cerevisterol (4), isocyathisterol (5), 6β-hydroxystigmast-4-en-3-one (6), 6β-hydroxy-4-campesten-3-one (7), were isolated from the fermented unpolished rice media by Periconia pseudobyssoides K5 (Periconiaceae), an endophytic fungus from medicinal plant Toona sureni (Meliaceae). The fermentation takes at 28 ± 2 °C for 30 days. The structure of new steroid (1) was elucidated by extensive spectroscopic measurements (IR, HR-ESI-TOFMS, and 1D and 2D NMR) analyses. The isolated compounds (1-7) were evaluated for heme polymerization inhibition assay (HPIA). The IC50 HPIA value of 1 is 8.24 ± 0.03 mg/ml.
Collapse
Affiliation(s)
- Azmi Azhari
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
- Department of Chemistry Education, Faculty of Tarbiyah and Teacher Training, Institut Agama Islam Negeri Syekh Nurjati Cirebon, Cirebon 45132, Indonesia
| | - Al Arofatus Naini
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Desi Harneti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Asri Peni Wulandari
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Yeni Mulyani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Sari Purbaya
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Aprilia Permata Sari
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Galih Bayu Pratama
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Risyandi Anwar
- Herbal Medicine Research, Department of Pediatric Dentistry, Faculty of Dental Medicine, University of Muhammadiyah Semarang, Semarang 50272, Indonesia
| | - Mohammad Fajar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Fajar Fauzi Abdullah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Kindi Farabi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Unang Supratman
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
- Central Laboratory, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| |
Collapse
|
7
|
Bovio E, Rancurel C, Seassau A, Magliano M, Gislard M, Loisier A, Kuchly C, Ponchet M, Danchin EGJ, Van Ghelder C. Genome sequence and annotation of Periconia digitata a hopeful biocontrol agent of phytopathogenic oomycetes. Sci Data 2023; 10:583. [PMID: 37673954 PMCID: PMC10483032 DOI: 10.1038/s41597-023-02440-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/02/2023] [Indexed: 09/08/2023] Open
Abstract
The Periconia fungal genus belongs to the phylum Ascomycota, order Pleosporales, family Periconiaceae. Periconia are found in many habitats, but little is known about their ecology. Several species from this genus produce bioactive molecules. Periconia digitata extracts were shown to be deadly active against the pine wilt nematode. Furthermore, P. digitata was shown to inhibit the plant pathogenic oomycete Phytophthora parasitica. Because P. digitata has great potential as a biocontrol agent and high quality genomic resources are still lacking in the Periconiaceae family, we generated long-read genomic data for P. digitata. Using PacBio Hifi sequencing technology, we obtained a highly-contiguous genome assembled in 13 chromosomes and totaling ca. 39 Mb. In addition, we produced a reference transcriptome, based on 12 different culture conditions, and proteomic data to support the genome annotation. Besides representing a new reference genome within the Periconiaceae, this work will contribute to our better understanding of the Eukaryotic tree of life and opens new possibilities in terms of biotechnological applications.
Collapse
Affiliation(s)
- Elena Bovio
- Institut Sophia Agrobiotech, INRAE 1355, CNRS and Université Côte d'Azur, 400, Route des Chappes, BP 167, 06903, Sophia Antipolis Cedex, France.
| | - Corinne Rancurel
- Institut Sophia Agrobiotech, INRAE 1355, CNRS and Université Côte d'Azur, 400, Route des Chappes, BP 167, 06903, Sophia Antipolis Cedex, France.
| | - Aurélie Seassau
- Institut Sophia Agrobiotech, INRAE 1355, CNRS and Université Côte d'Azur, 400, Route des Chappes, BP 167, 06903, Sophia Antipolis Cedex, France
| | - Marc Magliano
- Institut Sophia Agrobiotech, INRAE 1355, CNRS and Université Côte d'Azur, 400, Route des Chappes, BP 167, 06903, Sophia Antipolis Cedex, France
| | - Marie Gislard
- GeT-PlaGe (genomic platform), Campus INRAE, 24 chemin de borde rouge, Auzeville CS 52627, 31326, CASTANET-TOLOSAN Cedex, France
| | - Anaïs Loisier
- GeT-PlaGe (genomic platform), Campus INRAE, 24 chemin de borde rouge, Auzeville CS 52627, 31326, CASTANET-TOLOSAN Cedex, France
| | - Claire Kuchly
- GeT-PlaGe (genomic platform), Campus INRAE, 24 chemin de borde rouge, Auzeville CS 52627, 31326, CASTANET-TOLOSAN Cedex, France
| | - Michel Ponchet
- Institut Sophia Agrobiotech, INRAE 1355, CNRS and Université Côte d'Azur, 400, Route des Chappes, BP 167, 06903, Sophia Antipolis Cedex, France
| | - Etienne G J Danchin
- Institut Sophia Agrobiotech, INRAE 1355, CNRS and Université Côte d'Azur, 400, Route des Chappes, BP 167, 06903, Sophia Antipolis Cedex, France
| | - Cyril Van Ghelder
- Institut Sophia Agrobiotech, INRAE 1355, CNRS and Université Côte d'Azur, 400, Route des Chappes, BP 167, 06903, Sophia Antipolis Cedex, France
| |
Collapse
|
8
|
Su P, Lu Z, Tian W, Chen Y, Maharachchikumbura SSN. Six Additions to the Genus Periconia (Dothideomycetes: Periconiaceae) from Graminaceous Plants in China. J Fungi (Basel) 2023; 9:jof9030300. [PMID: 36983468 PMCID: PMC10054280 DOI: 10.3390/jof9030300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Periconia is a polyphyletic and asexual morphic genus within the family Periconiaceae (Pleosporales). The genus is characterized by a pale to dark brown stipe with an apical conidial head and ellipsoidal to oblong conidia. Species of Periconia are widely distributed throughout the world in various hosts, while most species are isolated from graminaceous plants. During our investigations of microfungal in Sichuan Province, China, 26 Periconia isolates were collected from a wide variety of graminaceous plants. These isolates corresponded to 11 species based on the examination of morphology and multi-locus phylogenetic analysis (SSU, ITS, LSU, TEF1, RPB2). This includes six new species (P. chengduensis, P. cynodontis, P. festucae, P. imperatae, P. penniseti, and P. spodiopogonis) and five new records (P. byssoides, P. chimonanthi, P. cookie, P. pseudobyssoides, and P. verrucosa). A comprehensive description and illustrations of the new species are provided and discussed with comparable taxa. These discoveries expand our knowledge of the species diversity of Periconia taxa in graminaceous plants in China.
Collapse
|
9
|
Secondary Metabolites of Endophytes Associated with the Zingiberaceae Family and Their Pharmacological Activities. Sci Pharm 2022. [DOI: 10.3390/scipharm91010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Zingiberaceae is commonly known as the ginger family and has been extensively studied in the last decades for its pharmacological purposes. The study of ginger includes microorganisms known as endophytes, which raise interest for the research community because they can produce a wide range of secondary metabolites. This review discusses the secondary metabolites of endophytes from the Zingiberaceae family and their pharmacological activities. We detail the group of secondary metabolites, updated for its absolute structures, source and part origins, and, especially, pharmacological divided properties. Zingiberaceae endophytes have 106 volatile compounds and 52 isolated constituents, including 17 polyketides, five nonribosomal peptides, five aromatic compounds, three alkaloids, and 21 terpene-alkaloids. They have antimicrobial, anticancer, antioxidant, and anti-inflammatory activities. Secondary metabolites from plant endophytes of the Zingiberaceae family have the potential to be therapeutic drugs in the future. Research on endophytic bacteria or fungi has been little performed. Therefore, this study supports a new drug discovery from Zingiberaceae endophytes and compares them for future drug development.
Collapse
|
10
|
Cank KB, Shepherd RA, Knowles SL, Rangel-Grimaldo M, Raja HA, Bunch ZL, Cech NB, Rice CA, Kyle DE, Falkinham JO, Burdette JE, Oberlies NH. Polychlorinated cyclopentenes from a marine derived Periconia sp. (strain G1144). PHYTOCHEMISTRY 2022; 199:113200. [PMID: 35421431 PMCID: PMC9173697 DOI: 10.1016/j.phytochem.2022.113200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/03/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Studies on an organic extract of a marine fungus, Periconia sp. (strain G1144), led to the isolation of three halogenated cyclopentenes along with the known and recently reported rhytidhyester D; a series of spectrometric and spectroscopic techniques were used to elucidate these structures. Interestingly, two of these compounds represent tri-halogenated cyclopentene derivatives, which have been observed only rarely from Nature. The relative and absolute configurations of the compounds were established via mass spectrometry (MS), nuclear magnetic resonance (NMR) spectroscopy, Mosher's esters method, optical rotation and GIAO NMR calculations, including correlation coefficient calculations and the use of both DP4+ and dJ DP4 analyses. Several of the isolated compounds were tested for activity in anti-parasitic, antimicrobial, quorum sensing inhibition, and cytotoxicity assays and were shown to be inactive.
Collapse
Affiliation(s)
- Kristóf B Cank
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, 435 Patricia A. Sullivan Science Building, Greensboro, NC, 27402-6170, USA
| | - Robert A Shepherd
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, 435 Patricia A. Sullivan Science Building, Greensboro, NC, 27402-6170, USA
| | - Sonja L Knowles
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, 435 Patricia A. Sullivan Science Building, Greensboro, NC, 27402-6170, USA
| | - Manuel Rangel-Grimaldo
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, 435 Patricia A. Sullivan Science Building, Greensboro, NC, 27402-6170, USA
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, 435 Patricia A. Sullivan Science Building, Greensboro, NC, 27402-6170, USA
| | - Zoie L Bunch
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, 435 Patricia A. Sullivan Science Building, Greensboro, NC, 27402-6170, USA
| | - Nadja B Cech
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, 435 Patricia A. Sullivan Science Building, Greensboro, NC, 27402-6170, USA
| | - Christopher A Rice
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, 724 Biological Sciences Building, University of Georgia, Athens, GA, 30602-2607, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, 335 Coverdell Center 500 D.W. Brooks Drive, Athens, GA, 30602-7399, USA.
| | - Dennis E Kyle
- Center for Tropical and Emerging Global Diseases, University of Georgia, 335 Coverdell Center 500 D.W. Brooks Drive, Athens, GA, 30602-7399, USA.
| | - Joseph O Falkinham
- Department of Biological Sciences, Virginia Tech Center for Drug Discovery, Derring Hall Room 2125, 926 West Campus Drive, Mail Code 0406, Blacksburg, VA, 24061, USA.
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 833 South Wood Street, 333 PHARM, MC 781, Chicago, IL, 60612, USA.
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, 435 Patricia A. Sullivan Science Building, Greensboro, NC, 27402-6170, USA.
| |
Collapse
|
11
|
Taxonomic Reappraisal of Periconiaceae with the Description of Three New Periconia Species from China. J Fungi (Basel) 2022; 8:jof8030243. [PMID: 35330245 PMCID: PMC8954830 DOI: 10.3390/jof8030243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
As a result of an ongoing research survey of microfungi in Yunnan, China, several saprobic ascomycetes were collected from various host substrates. Preliminary morphological analyses identified a few of these taxa as Periconia species. We obtained DNA sequence data of the Periconia species from pure cultures and investigated their phylogenetic affinities. Phylogenetic analyses of a combined LSU, ITS, SSU and tef1-α sequence dataset demonstrated that five isolates of Periconia formed well-resolved subclades within Periconiaceae. Accordingly, three new Periconia species are introduced viz. P. artemisiae, P. chimonanthi and P. thysanolaenae, and new host and geographical records of P. byssoides and P. pseudobyssoides, are also reported from dead branches of Prunus armeniaca and Scrophularia ningpoensis. Periconia celtidis formed a monophyletic clade with P. byssoides in the present phylogenetic analyses. Results of the pairwise homoplasy index (PHI) test indicated significant recombination between P. byssoides and P. celtidis. Therefore, P. celtidis has been synonymized under P. byssoides. In addition, we re-illustrated and studied the type specimen of the sexual genus Bambusistroma. As a type species of Bambusistroma, B. didymosporum features similar morphology to the sexual morph of Periconia homothallica and P. pseudodigitata. We therefore synonymize Bambusistroma under Periconia based on morphological and phylogenetic evidence. Furthermore, our new isolates produced brown conidia of asexual morph in agar media typical of the genus Noosia. Based on morphological comparison with Periconia in vitro and phylogenetic status of Noosia, we also treat Noosia as a synonym of Periconia. Detailed descriptions and illustrations of three novel taxa and two new records of Periconia byssoides and P. pseudobyssoides as well as the illustration of P. didymosporum comb. nov. are provided. An updated phylogenetic tree of Periconiaceae using maximum likelihood and Bayesian inference analyses is constructed. Generic circumscription of Periconia is amended.
Collapse
|
12
|
A Snapshot Picture of the Fungal Composition of Bee Bread in Four Locations in Bulgaria, Differing in Anthropogenic Influence. J Fungi (Basel) 2021; 7:jof7100845. [PMID: 34682266 PMCID: PMC8539294 DOI: 10.3390/jof7100845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/21/2021] [Accepted: 10/07/2021] [Indexed: 01/30/2023] Open
Abstract
Information about the fungal composition of bee bread, and the fermentation processes to which the fungi contribute significantly, is rather scarce or fragmentary. In this study, we performed an NGS-based metagenomics snapshot picture study of the fungal composition of bee bread in four locations in Bulgaria during the most active honeybee foraging period at the end of June 2020. The sampling locations were chosen to differ significantly in climatic conditions, landscape, and anthropogenic pressure, and the Illumina 2 × 250 paired-end reads platform was used for amplicon metagenomics study of the ITS2 region. We found that some of the already reported canonical beneficial core fungal species were present within the studied samples. However, some fungal genera such as Monilinia, Sclerotinia, Golovinomyces, Toxicocladosporium, Pseudopithomyces, Podosphaera and Septoriella were reported for the first time among the dominant genera for a honeybee related product. Anthropogenic pressure negatively influences the fungal composition of the bee bread in two different ways-urban/industrial pressure affects the presence of pathogenic species, while agricultural pressure is reflected in a decrease of the ratio of the beneficial fungi.
Collapse
|