1
|
Rashidi T, Shakeri A. Effects of nano zinc oxide and nano chitosan on the taste masking paracetamol granules. Drug Dev Ind Pharm 2024; 50:495-510. [PMID: 38718260 DOI: 10.1080/03639045.2024.2353096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024]
Abstract
OBJECTIVE The purpose of this study is to investigate the taste masking of Paracetamol granules in the range of 250-850 µm, coated by two nanocomposites prepared from Eudragit® E100, nanozinc oxide, and nanochitosan, respectively, from 1 to 5% by the weight of the granules. METHODS In this study, Paracetamol granules were coated in several formulas with two different types of nanocomposites (polymeric and mineral) on two sizes of granules to reduce bitter taste and with the FBC method and pH-sensitive polymers (Eudragit® E100). RESULTS The effect of nanoparticles (Nano zinc oxide and Nanochitosan) on taste-masking Paracetamol was studied with dissolution-coated granules in vitro by simulating in the oral (pH 6.8) range. Based on the results of the studies, the rate of drug release was confirmed by the taste test, and the formulated granule with 5% nano-chitosan (F14) had the best bitter taste mask function of all samples. These results were also confirmed by scanning electron microscopy (SEM) analysis, which showed a smoother and more stable surface than the samples obtained from other formulations. CONCLUSION In the comparison of the release of two types of nanocomposites in the dissolution test, it was shown that the type B granules of Paracetamol's 5% nano-chitosan-coated granule (F14) were released 99% less than Paracetamol's 5% nano-ZnO-coated granule (F11). and Paracetamol's 1% nano-chitosan-coated granule (F12) was released 91% less than Paracetamol's 1% nano-ZnO-coated granule (F9). The results showed that nano-chitosan-coated granules have better coverage of bitter taste instead of nano-ZnO.
Collapse
Affiliation(s)
- Tina Rashidi
- School of Chemistry, Alborz Campus, University of Tehran, Tehran, Iran
| | - Alireza Shakeri
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Simšič T, Planinšek O, Baumgartner A. Taste-masking methods in multiparticulate dosage forms with a focus on poorly soluble drugs. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2024; 74:177-199. [PMID: 38815202 DOI: 10.2478/acph-2024-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 06/01/2024]
Abstract
In the past, the administration of medicines for children mainly involved changes to adult dosage forms, such as crushing tablets or opening capsules. However, these methods often led to inconsistent dosing, resulting in under- or overdosing. To address this problem and promote adherence, numerous initiatives, and regulatory frameworks have been developed to develop more child-friendly dosage forms. In recent years, multiparticulate dosage forms such as mini-tablets, pellets, and granules have gained popularity. However, a major challenge that persists is effectively masking the bitter taste of drugs in such formulations. This review therefore provides a brief overview of the current state of the art in taste masking techniques, with a particular focus on taste masking by film coating. Methods for evaluating the effectiveness of taste masking are also discussed and commented on. Another important issue that arises frequently in this area is achieving sufficient dissolution of poorly water-soluble drugs. Since the simultaneous combination of sufficient dissolution and taste masking is particularly challenging, the second objective of this review is to provide a critical summary of studies dealing with multiparticulate formulations that are tackling both of these issues.
Collapse
Affiliation(s)
- Tilen Simšič
- 1Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
- 2Alterno Labs d.o.o. 1231 Ljubljana-Črnuče Slovenia
| | - Odon Planinšek
- 1Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Ana Baumgartner
- 1Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Morelli L, Ochoa E, Salvioni L, Davide Giustra M, De Santes B, Spena F, Barbieri L, Garbujo S, Tomaino G, Novati B, Bolis L, Moutaharrik S, Prosperi D, Palugan L, Colombo M. Microfluidic nanoparticle synthesis for oral solid dosage forms: A step toward clinical transition processes. Int J Pharm 2024; 652:123850. [PMID: 38280498 DOI: 10.1016/j.ijpharm.2024.123850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/11/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
Nanomedicine provides various opportunities for addressing medical challenges associated with drug bioavailability, stability, and efficacy. In particular, oral nanoparticles (NPs) represent an alternative strategy to enhance the solubility and stability of active ingredients through the gastrointestinal tract. The nanocarriers could be used for both local and systemic targeting, enabling controlled release of encapsulated drugs. This approach allows more efficient therapies. In this work, we aim to develop reliable oral solid dosage forms incorporating NPs produced by either one pot synthesis or continuous production, following protocols that yield highly consistent outcomes, promoting their technology transfer and clinical use. Microfluidics technology was selected to allow an automated and highly productive synthetic approach suitable for the highly throughput production. In particular, innovative systems, which combine advantage of NPs and solid dosage formulation, were designed, developed, and characterized demonstrating the possibility to obtaining oral administration. The resulting NPs were thus carried on oral dosage forms, i.e., pellets and minitablets. NPs resulted stable after dosage forms manufacturing, leading to confidence also on protection of encapsulated drugs. Indomethacin was used as a tracer to test biopharmaceutical behaviour. Anti-inflammatories or cytotoxic chemotherapeutics could be vehiculated leading to a breakthrough in the treatment of severe diseases allowing the oral administration of these drugs. We believe that the advancement achieved with the results of our work paves the way for the progression of nanoproducts into clinical transition processes.
Collapse
Affiliation(s)
- Lucia Morelli
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126 Milano, Italy
| | - Evelyn Ochoa
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126 Milano, Italy
| | - Lucia Salvioni
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126 Milano, Italy
| | - Marco Davide Giustra
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126 Milano, Italy
| | - Beatrice De Santes
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126 Milano, Italy
| | - Francesca Spena
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126 Milano, Italy
| | - Linda Barbieri
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126 Milano, Italy
| | - Stefania Garbujo
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126 Milano, Italy
| | - Giulia Tomaino
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126 Milano, Italy
| | - Brian Novati
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126 Milano, Italy
| | - Leonardo Bolis
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126 Milano, Italy
| | - Saliha Moutaharrik
- University of Milano, Department of Pharmaceutical Sciences, Via G. Colombo 71, 20133 Milano, Italy
| | - Davide Prosperi
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126 Milano, Italy
| | - Luca Palugan
- University of Milano, Department of Pharmaceutical Sciences, Via G. Colombo 71, 20133 Milano, Italy.
| | - Miriam Colombo
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126 Milano, Italy.
| |
Collapse
|
4
|
Lu H, Wang J, Huang M, Ahmad M, Cong L, Tian M, Wang Q, Ying R, Tan C. Bitterness-masking assessment of luteolin encapsulated in whey protein isolate-coated liposomes. Food Funct 2023; 14:3230-3241. [PMID: 36938848 DOI: 10.1039/d2fo03641j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
An unacceptable bitter taste limits the application of luteolin in healthier food systems. In this study, a bitterness-masking assessment was performed on whey protein isolate-coated liposomes loaded with luteolin (WPI-coated liposomes) using an electronic tongue and human sensory test. The physical properties of the WPI-coated colloidal nanocarrier were characterized by zeta potential, average diameter, distribution, and morphology analyses. The results indicated that WPI-coated nanocarrier systems exhibited a uniformly dispersed distribution and spherical morphology. After the comparison of the bitterness value, the bitterness-reducing effect of 5% WPI-coated liposomes was the most significant and reduced the bitterness of luteolin by 75%. Raman spectroscopy and X-ray diffraction analysis demonstrated that the decoration of WPI on the liposomes reduced the free motion of lipid molecules. This promoted the ordering at the polar headgroup area and hydrophobic core of the lipid bilayer, which explained why luteolin-loaded liposomes (uncoated liposomes) and WPI-coated liposomes could reduce the bitterness of luteolin from the perspective of bitter molecular groups. Combined with the Raman spectral data, the bilayer rigidity of 5% WPI-coated liposomes was positively responsive to the stabilization of uncoated liposomes against storage and resistance ability against surfactants. It was proven that the emergence of the surface modification of the WPI coating enhanced the stability of uncoated liposomes. These results may contribute to the use of WPI-coated liposomes as prospective candidates for effective delivery of the bioactive bitter substance in nutraceuticals and functional foods.
Collapse
Affiliation(s)
- Hui Lu
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jin Wang
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Meigui Huang
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Mehraj Ahmad
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lixia Cong
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Mengwei Tian
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qingling Wang
- School of Food Science and Technology, Shihezi University, Xinjiang Autonomous Region, Shihezi, PR China
| | - Ruifeng Ying
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chen Tan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|