1
|
Hasan M, Quan NV, Anh LH, Khanh TD, Xuan TD. Salinity Treatments Promote the Accumulations of Momilactones and Phenolic Compounds in Germinated Brown Rice. Foods 2023; 12:2501. [PMID: 37444239 DOI: 10.3390/foods12132501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
This is the first investigation, conducted in a completely randomized design (CRD), to determine the effects of different salinity levels (75 and 150 mM) and germination periods (3, 4, and 5 days) on momilactone and phenolic accumulations in germinated brown rice (GBR) var. Koshihikari. Particularly, the identification of bioactive compounds was confirmed using electrospray ionization-mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) spectroscopy (1H and 13C). Momilactone A (MA) and momilactone B (MB) amounts were determined by ultra-performance liquid chromatography-electrospray ionization-mass spectrometry (UPLC-ESI-MS), whereas other compounds were quantified by spectrophotometry and high-performance liquid chromatography (HPLC). Accordingly, GBR under B2 treatment (75 mM salinity for 4 days) showed the greatest total phenolic and flavonoid contents (14.50 mg gallic acid and 11.06 mg rutin equivalents, respectively, per g dry weight). GBR treated with B2 also accumulated the highest quantities of MA, MB, ρ-coumaric, ferulic, cinnamic, salicylic acids, and tricin (18.94, 41.00, 93.77, 139.03, 46.05, 596.26, and 107.63 µg/g DW, respectively), which were consistent with the strongest antiradical activities in DPPH and ABTS assays (IC50 = 1.58 and 1.78 mg/mL, respectively). These findings have implications for promoting the value of GBR consumption and rice-based products that benefit human health.
Collapse
Affiliation(s)
- Mehedi Hasan
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan
| | - Nguyen Van Quan
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan
| | - La Hoang Anh
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan
- Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan
| | - Tran Dang Khanh
- Agricultural Genetics Institute, Pham Van Dong Street, Hanoi 122000, Vietnam
- Center for Agricultural Innovation, Vietnam National University of Agriculture, Hanoi 131000, Vietnam
| | - Tran Dang Xuan
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan
- Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan
| |
Collapse
|
2
|
Identification and Isolation Techniques for Plant Growth Inhibitors in Rice. SEPARATIONS 2023. [DOI: 10.3390/separations10020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Plant growth inhibitors (PGIs) in rice (Oryza sativa), or rice allelochemicals, are secondary metabolites that are either exudated by rice plants to cope with natural competitors or produced during the decomposition of rice by-products in the paddy fields. Of these, the major groups of rice PGIs include phenolics, flavonoids, terpenoids, alkaloids, steroids, and fatty acids, which also exhibit potential medicinal and pharmaceutical properties. Recently, the exploitation of rice PGIs has attracted considerable attention from scientists worldwide. The biosynthesis, exudation, and release of PGIs are dependent on environmental conditions, relevant gene expression, and biodiversity among rice varieties. Along with the mechanism clarification, numerous analytical methods have been improved to effectively support the identification and isolation of rice PGIs during the last few decades. This paper provides an overview of rice PGIs and techniques used for determining and extracting those compounds from rice. In particular, the features, advantages, and limitations of conventional and upgraded extraction methods are comprehensively reported and discussed. The conventional extraction methods have been gradually replaced by advanced techniques consisting of pressurized liquid extraction (PLE), microwave-assisted extraction (MAE), and solid-phase extraction (SPE). Meanwhile, thin-layer chromatography (TLC), liquid chromatography (LC), gas chromatography (GC), mass spectrometry (MS), nuclear magnetic resonance (NMR), high-resolution mass spectrometry (HR-MS), infrared spectroscopy (IR), near-infrared spectroscopy (NIRS), and X-ray crystallography are major tools for rice PGI identification and confirmation. With smart agriculture becoming more prevalent, the statistics of rice PGIs and extraction methods will help to provide useful datasets for building an autonomous model for safer weed control. Conceivably, the efficient exploitation of rice PGIs will not only help to increase the yield and economic value of rice but may also pave the way for research directions on the development of smart and sustainable rice farming methods.
Collapse
|
3
|
Treatment of Drug-Induced Liver Injury. Biomedicines 2022; 11:biomedicines11010015. [PMID: 36672522 PMCID: PMC9855719 DOI: 10.3390/biomedicines11010015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/28/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Current pharmacotherapy options of drug-induced liver injury (DILI) remain under discussion and are now evaluated in this analysis. Needless to say, the use of the offending drug must be stopped as soon as DILI is suspected. Normal dosed drugs may cause idiosyncratic DILI, and drugs taken in overdose commonly lead to intrinsic DILI. Empirically used but not substantiated regarding efficiency by randomized controlled trials (RCTs) is the intravenous antidote treatment with N-acetylcysteine (NAC) in patients with intrinsic DILI by N-acetyl-p-aminophenol (APAP) overdose. Good data recommending pharmacotherapy in idiosyncratic DILI caused by hundreds of different drugs are lacking. Indeed, a recent analysis revealed that just eight RCTs have been published, and in only two out of eight trials were DILI cases evaluated for causality by the worldwide used Roussel Uclaf Causality Assessment Method (RUCAM), representing overall a significant methodology flaw, as results of DILI RCTs lacking RUCAM are misleading since many DILI cases are known to be attributable erroneously to nondrug alternative causes. In line with these major shortcomings and mostly based on anecdotal reports, glucocorticoids (GCs) and other immuno-suppressants may be given empirically in carefully selected patients with idiosyncratic DILI exhibiting autoimmune features or caused by immune checkpoint inhibitors (ICIs), while some patients with cholestatic DILI may benefit from ursodeoxycholic acid use; in other patients with drug-induced hepatic sinusoidal obstruction syndrome (HSOS) and coagulopathy risks, the indication for anticoagulants should be considered. In view of many other mechanistic factors such as the hepatic microsomal cytochrome P450 with a generation of reactive oxygen species (ROS), ferroptosis with toxicity of intracellular iron, and modification of the gut microbiome, additional therapy options may be available in the future. In summation, stopping the offending drug is still the first line of therapy for most instances of acute DILI, while various therapies are applied empirically and not based on good data from RCTs awaiting further trials using the updated RUCAM that asks for strict exclusion and inclusion details like liver injury criteria and provides valid causality rankings of probable and highly probable grades.
Collapse
|
4
|
Efficacy of N-Methyl-N-Nitrosourea Mutation on Physicochemical Properties, Phytochemicals, and Momilactones A and B in Rice. SUSTAINABILITY 2019. [DOI: 10.3390/su11236862] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Attempts regarding the improvement and development of novel rice with better quality and higher productivity have been increasing. Among approaches, mutation is a direct alteration on the genome and considered as one of the most beneficial routes to acquire new beneficial traits in rice. An experiment was carried out to explore the effects of N-methyl-N-nitrosourea (MNU) mutation on the antioxidant activities, phytochemical compounds, and momilactones A (MA) and B (MB) in rice. Two rice cultivars, K1 (an original cultivar DT84) and K2 (mutated DT84), were examined. Antioxidant activities, phenolic compounds, and momilactones of the rice grain, husk, and straw portions were measured and quantified. Antioxidant activities were higher in grain and straw of K2, whereas K1 showed greater antioxidant activity in rice husk. Additionally, K2 displayed higher total phenolic contents (TPC) in grain and straw as well as lower of it in the husk, but these variations significantly differed only in the straw portion. An increase in total flavonoid contents (TFC) was observed in the husk of K1, while K2 significantly enhanced TFC in straw. Both MA and MB, two compounds obtaining antidiabetes, anticancer, antimicrobial, antigout, and antiobesity properties, were detected and quantified in grain, husk, and straw of K1 and K2 samples. Generally, the contents of MA were higher than MB in all tested portions of rice crop. MA and MB were higher in straw followed by those in husk and grain, respectively. K2 contained higher amounts of MA and MB in straw and husk, but lower contents in grain compared with those in K1. This study illustrates that MNU mutation can improve grain quality and enhance bioactive compounds in straw, husk, and grain of rice. This approach has the potential to develop functional foods from rice, and therefore help farmers in developing countries to improve value in rice production.
Collapse
|
5
|
Quan NV, Xuan TD, Tran HD, Ahmad A, Khanh TD, Dat TD. Contribution of momilactones A and B to diabetes inhibitory potential of rice bran: Evidence from in vitro assays. Saudi Pharm J 2019; 27:643-649. [PMID: 31297018 PMCID: PMC6598221 DOI: 10.1016/j.jsps.2019.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/13/2019] [Indexed: 01/20/2023] Open
Abstract
This study was the first to detect the presence of the two compounds momilactone A (MA) and momilactone B (MB) in rice bran using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). By in vitro assays, both MA and MB exhibited potent inhibitory activities on pancreatic α-amylase and α-glucosidase which were significantly higher than γ-oryzanol, a well-known diabetes inhibitor. Remarkably, MA and MB indicated an effective inhibition on trypsin with the IC50 values of 921.55 and 884.03 µg/mL, respectively. By high-performance liquid chromatography (HPLC), quantities of MA (6.65 µg/g dry weight) and MB (6.24 µg/g dry weight) in rice bran were determined. Findings of this study revealed the α-amylase, α-glucosidase and trypsin inhibitors MA and MB contributed an active role to the diabetes inhibitory potential of rice bran.
Collapse
Affiliation(s)
- Nguyen Van Quan
- Division of Development Technology, Graduate School for International Development and Cooperation (IDEC), Hiroshima University, Higashi Hiroshima 739-8529, Japan
| | - Tran Dang Xuan
- Division of Development Technology, Graduate School for International Development and Cooperation (IDEC), Hiroshima University, Higashi Hiroshima 739-8529, Japan
| | - Hoang-Dung Tran
- Department of Biotechnology, NTT Institute of Hi-Technology, Nguyen Tat Thanh University, 298A-300A Nguyen Tat Thanh Street,Ward 13, District 4, Ho Chi Minh 72820, Viet Nam
| | - Ateeque Ahmad
- Process Chemistry and Technology Department, Central Institute of Medicinal and Aromatic Plants, Lucknow 226016, India
| | - Tran Dang Khanh
- Agricultural Genetics Institute, Pham Van Dong Street, Hanoi 122000, Viet Nam
- Center for Expert, Vietnam National University of Agriculture, Hanoi 131000, Viet Nam
| | - Tran Dang Dat
- Khai Xuan International Co. Ltd., Ha Dong District, Duong Noi Ward, LK20A-20B, Khai Xuan Building, Hanoi 152611, Viet Nam
| |
Collapse
|
6
|
Quan NV, Xuan TD, Tran HD, Dieu Thuy NT. Inhibitory Activities of Momilactones A, B, E, and 7-Ketostigmasterol Isolated from Rice Husk on Paddy and Invasive Weeds. PLANTS 2019; 8:plants8060159. [PMID: 31181671 PMCID: PMC6631820 DOI: 10.3390/plants8060159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/18/2019] [Accepted: 06/06/2019] [Indexed: 01/02/2023]
Abstract
Rice husk has been exploited as a potential source of allelochemicals. In this study, four bioactive compounds including momilactone E (ME), 7-ketostigmasterol (7KS), momilactone A (MA), and momilactone B (MB) were isolated by column chromatography (CC) to yield 2.7, 0.3, 11.7, and 8.3 mg/kg rice husk, respectively. The structures of the isolated compounds were identified and confirmed by spectroscopic techniques consisting of 1H and 13C nuclear magnetic resonance (NMR), electrospray ionization mass (ESI), high-resolution mass spectrometry (HR-MS) and infrared spectroscopy (IS). An advanced quantitative method for MA and MB was achieved to increase the detectable yields of MA and MB in rice husk to 51.96 and 42.33 µg/mL, respectively. The inhibitory activities of MA, MB, ME, and 7KS were examined on lettuce (Lactuca sativa), barnyard grass (Echinochloa crus-galli), and tall goldenrod (Solidago altissima) in bioassays. The allelopathic activities of ME and 7KS were compared with those of potent phytoalexin momilactones A (MA) and B (MB), and the standard p-hydroxybenzoic acid (pHA). Results showed that both MA and MB exhibited stronger inhibitory activity than ME and 7KS. MB exerted greater inhibitions than MA but the mixture of MA and MB (1:1, v/v) possessed a similar level of inhibition to MB. On the other hand, although ME and 7KS presented non-significant inhibition, their mixture of ME-7KS (1:1, v/v) displayed a remarkable inhibition on the growth of S. altissima. Findings of this study revealed that MA, MB, and the mixture ME-7KS had the potential to control the invasive plant S. altissima and the noxious paddy weed E. crus-galli in vitro, but their mode of actions should be further investigated.
Collapse
Affiliation(s)
- Nguyen Van Quan
- Division of Development Technology, Graduate School for International Development and Cooperation (IDEC), Hiroshima University, Higashi Hiroshima 739-8529, Japan.
| | - Tran Dang Xuan
- Division of Development Technology, Graduate School for International Development and Cooperation (IDEC), Hiroshima University, Higashi Hiroshima 739-8529, Japan.
| | - Hoang-Dung Tran
- Faculty of Biotechnology, Nguyen Tat Thanh University, 298A-300A Nguyen Tat Thanh Street, Ward 13, District 4, Ho Chi Minh 72820, Vietnam.
| | - Nguyen Thi Dieu Thuy
- Division of Development Technology, Graduate School for International Development and Cooperation (IDEC), Hiroshima University, Higashi Hiroshima 739-8529, Japan.
| |
Collapse
|
7
|
Minh TN, Xuan TD, Van TM, Andriana Y, Viet TD, Khanh TD, Tran HD. Phytochemical Analysis and Potential Biological Activities of Essential Oil from Rice Leaf. Molecules 2019; 24:E546. [PMID: 30717326 PMCID: PMC6384862 DOI: 10.3390/molecules24030546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/23/2019] [Accepted: 02/01/2019] [Indexed: 12/16/2022] Open
Abstract
Although many investigations on phytochemicals in rice plant parts and root exudates have been conducted, information on the chemical profile of essential oil (EO) and potent biological activities has been limited. In this study, chemical compositions of rice leaf EO and in vitro biological activities were investigated. From 1.5 kg of fresh rice leaves, an amount of 20 mg EO was obtained by distillation and analyzed by gas chromatography-mass spectrometry (GC-MS), electrospray ionization (ESI), and atmospheric pressure chemical ionization (APCI) to reveal the presence of twelve volatile constituents, of which methyl ricinoleate (27.86%) was the principal compound, followed by palmitic acid (17.34%), and linolenic acid (11.16%), while 2-pentadecanone was the least (2.13%). Two phytoalexin momilactones A and B were first time identified in EO using ultra-performance liquid chromatography coupled with electrospray mass spectrometry (UPLC/ESI-MS) (9.80 and 4.93 ng/g fresh weight, respectively), which accounted for 7.35% and 3.70% of the EO, respectively. The assays of DPPH (IC50 = 73.1 µg/mL), ABTS (IC50 = 198.3 µg/mL), FRAP (IC50 = 700.8 µg/mL) and β-carotene oxidation (LPI = 79%) revealed that EO possessed an excellent antioxidant activity. The xanthine oxidase assay indicated that the anti-hyperuricemia potential was in a moderate level (IC50 = 526 µg/mL) as compared with the standard allopurinol. The EO exerted potent inhibition on growth of Raphanus sativus, Lactuca sativa, and two noxious weeds Echinochloa crus-galli, and Bidens pilosa, but in contrast, the growth of rice seedlings was promoted. Among the examined plants, the growth of the E. crus-galli root was the most inhibited, proposing that constituents found in EO may have potential for the control of the problematic paddy weed E. crus-galli. It was found that the EO of rice leaves contained rich phytochemicals, which were potent in antioxidants and gout treatment, as well as weed management. Findings of this study highlighted the potential value of rice leaves, which may provide extra benefits for rice farmers.
Collapse
Affiliation(s)
- Truong Ngoc Minh
- Graduate school for International Development and Cooperation, Hiroshima University, Hiroshima 739-8529, Japan.
| | - Tran Dang Xuan
- Graduate school for International Development and Cooperation, Hiroshima University, Hiroshima 739-8529, Japan.
| | - Truong Mai Van
- Graduate school for International Development and Cooperation, Hiroshima University, Hiroshima 739-8529, Japan.
| | - Yusuf Andriana
- Graduate school for International Development and Cooperation, Hiroshima University, Hiroshima 739-8529, Japan.
| | - Tran Duc Viet
- Graduate school for International Development and Cooperation, Hiroshima University, Hiroshima 739-8529, Japan.
| | - Tran Dang Khanh
- Agricultural Genetics Institute, Hanoi City 123000, Vietnam.
- Center for Expert, Vietnam National University of Agriculture, Hanoi 131000, Vietnam.
| | - Hoang-Dung Tran
- Department of Biotechnology, NTT Institute of Hi-Technology, Nguyen-Tat-Thanh University, 298A-300A Nguyen-Tat-Thanh Street, 13 Ward, District 04, Ho Chi Minh City 72820, Vietnam.
| |
Collapse
|
8
|
Quan NV, Tran HD, Xuan TD, Ahmad A, Dat TD, Khanh TD, Teschke R. Momilactones A and B Are α-Amylase and α-Glucosidase Inhibitors. Molecules 2019; 24:molecules24030482. [PMID: 30700006 PMCID: PMC6385104 DOI: 10.3390/molecules24030482] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 01/21/2019] [Indexed: 12/23/2022] Open
Abstract
Momilactones A (MA) and B (MB) are the active phytoalexins and allelochemicals in rice. In this study, MA and MB were purified from rice husk of Oryza sativa cv. Koshihikari by column chromatography, and purification was confirmed by high-performance liquid chromatography, thin-layer chromatography, gas chromatography-mass spectrometry, liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS), and 1H and 13C nuclear magnetic resonance analyses. By in vitro assays, both MA and MB exerted potent inhibition on α-amylase and α-glucosidase activities. The inhibitory effect of MB on these two key enzymes was greater than that of MA. Both MA and MB exerted greater α-glucosidase suppression as compared to that of the commercial diabetic inhibitor acarbose. Quantities of MA and MB in rice grain were 2.07 ± 0.01 and 1.06 ± 0.01 µg/dry weight (DW), respectively. This study was the first to confirm the presence of MA and MB in refined rice grain and reported the α-amylase and α-glucosidase inhibitory activity of the two compounds. The improved protocol of LC-ESI-MS in this research was simple and effective to detect and isolate MA and MB in rice organs.
Collapse
Affiliation(s)
- Nguyen Van Quan
- Division of Development Technology, Graduate School for International Development and Cooperation (IDEC), Hiroshima University, Higashi Hiroshima 739-8529, Japan.
| | - Hoang-Dung Tran
- Department of Biotechnology, NTT Institute of Hi-Technology, Nguyen Tat Thanh University, 298A-300A Nguyen Tat Thanh Street, Ward 13, District 4, Ho Chi Minh City 72820, Vietnam.
| | - Tran Dang Xuan
- Division of Development Technology, Graduate School for International Development and Cooperation (IDEC), Hiroshima University, Higashi Hiroshima 739-8529, Japan.
| | - Ateeque Ahmad
- Central Institute of Medicinal and Aromatic Plants, Process Chemistry and Technology Department, Lucknow 226016, India.
| | - Tran Dang Dat
- Khai Xuan International Co., Ltd., 22, 9/53/8 Quan Hoa, Cau Giay District, Hanoi 123000, Vietnam.
| | - Tran Dang Khanh
- Agricultural Genetics Institute, Pham Van Dong Street, Hanoi 122000, Vietnam.
- Center for Expert, Vietnam National University of Agriculture, Hanoi 131000, Vietnam.
| | - Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, 63450 Hanau, Germany.
| |
Collapse
|