1
|
Godínez-Mendoza PL, Rico-Chávez AK, Ferrusquía-Jimenez NI, Carbajal-Valenzuela IA, Villagómez-Aranda AL, Torres-Pacheco I, Guevara-González RG. Plant hormesis: Revising of the concepts of biostimulation, elicitation and their application in a sustainable agricultural production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:164883. [PMID: 37348730 DOI: 10.1016/j.scitotenv.2023.164883] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
Current research in basic and applied knowledge of plant science has aimed to unravel the role of the interaction between environmental factors and the genome in the physiology of plants to confer the ability to overcome challenges in a climate change scenario. Evidence shows that factors causing environmental stress (stressors), whether of biological, chemical, or physical origin, induce eustressing or distressing effects in plants depending on the dose. The latter suggests the induction of the "hormesis" phenomenon. Sustainable crop production requires a better understanding of hormesis, its basic concepts, and the input variables to make its management feasible. This implies that acknowledging hormesis in plant research could allow specifying beneficial effects to effectively manage environmental stressors according to cultivation goals. Several factors have been useful in this regard, which at low doses show beneficial eustressing effects (biostimulant/elicitor), while at higher doses, they show distressing toxic effects. These insights highlight biostimulants/elicitors as tools to be included in integrated crop management strategies for reaching sustainability in plant science and agricultural studies. In addition, compelling evidence on the inheritance of elicited traits in plants unfolds the possibility of implementing stressors as a tool in plant breeding.
Collapse
Affiliation(s)
- Pablo L Godínez-Mendoza
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico
| | - Amanda K Rico-Chávez
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico
| | - Noelia I Ferrusquía-Jimenez
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico
| | - Ireri A Carbajal-Valenzuela
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico
| | - Ana L Villagómez-Aranda
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico
| | - Irineo Torres-Pacheco
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico.
| | - Ramon G Guevara-González
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico.
| |
Collapse
|
2
|
Poudel P, Duenas AEK, Di Gioia F. Organic waste compost and spent mushroom compost as potential growing media components for the sustainable production of microgreens. FRONTIERS IN PLANT SCIENCE 2023; 14:1229157. [PMID: 37469787 PMCID: PMC10352662 DOI: 10.3389/fpls.2023.1229157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/14/2023] [Indexed: 07/21/2023]
Abstract
Microgreens are emerging specialty crops becoming increasingly popular for their rich nutrient profile and variety of colors, flavors, and textures. The growing medium is a significant key factor in microgreen yield, quality, and sustainability. The widespread use of peat-based media raises questions regarding the environmental sustainability of microgreens production, and new substrates that are more sustainable are required. To this purpose, a study was designed with the objective of comparing eight alternative growing media evaluating their physicochemical properties and effect on yield, mineral profile, and nutritional quality of peas and radish microgreens. Tested substrates included a standard peat and perlite mixture (PP), coconut coir (CC), spent mushroom compost (SMC), organic waste compost (CMP), and 50:50 (v:v) mixes of PP and SMC, PP and CMP, CC and SMC, and CC and CMP. The physicochemical properties widely differed among the alternative substrates tested. SMC had high electrical conductivity and salt concentration, which resulted in poor seed germination. Growing media tested significantly influenced the production and nutritional quality of both microgreen species and variations were modulated by the species. With a 39.8% fresh yield increase or a small yield decrease (-14.9%) in radish and peas, respectively, PP+CMP (50:50, v/v) mix provided microgreens of similar or higher nutritional quality than PP, suggesting the potential of substituting at least in part peat with CMP. Using locally available CMP in mix with PP could reduce the microgreens industry reliance on peat while reducing costs and improving the sustainability of the production of microgreens. Further research is needed to evaluate also the potential economic and environmental benefits of using locally available organic materials like CMP as alternative growing media and peat-substitute to produce microgreens.
Collapse
Affiliation(s)
- Pradip Poudel
- Department of Plant Science, The Pennsylvania State University, University Park, PA, United States
| | - Anela E. K. Duenas
- Department of Plant Science, The Pennsylvania State University, University Park, PA, United States
- College of Natural and Applied Sciences, University of Guam, Mangilao, GU, United States
| | - Francesco Di Gioia
- Department of Plant Science, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
3
|
Voutsinos-Frantzis O, Karavidas I, Petropoulos D, Zioviris G, Fortis D, Ntanasi T, Ropokis A, Karkanis A, Sabatino L, Savvas D, Ntatsi G. Effects of NaCl and CaCl 2 as Eustress Factors on Growth, Yield, and Mineral Composition of Hydroponically Grown Valerianella locusta. PLANTS (BASEL, SWITZERLAND) 2023; 12:1454. [PMID: 37050080 PMCID: PMC10097257 DOI: 10.3390/plants12071454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Corn salad (Valerianella locusta) is a popular winter salad, cultivated as an ingredient for ready-to-eat salads. The application of mild salinity stress (eustress) can increase the flavor and reduce the nitrate content of certain crops but, at the same time, a wrong choice of the eustress type and dose can negatively affect the overall productivity. In this research, the effects of different isosmotic salt solutions, corresponding to two different electrical conductivity (EC) levels, were investigated on the yield and mineral composition of hydroponically grown Valerianella locusta "Elixir". Five nutrient solutions (NS) were compared, including a basic NS used as the control, and four saline NS were obtained by adding to the basic NS either NaCl or CaCl2 at two rates each, corresponding to two isosmotic salt levels at a low and high EC level. Corn salad proved moderately susceptible to long-term salinity stress, suffering growth losses at both low and high EC levels of saline solution, except from the low NaCl treatment. Hence, it appears that mild salinity stress induced by NaCl could be employed as an eustress solution and corn salad could be cultivated with low-quality irrigation water (20 mM NaCl) in hydroponic systems.
Collapse
Affiliation(s)
- Orfeas Voutsinos-Frantzis
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Ioannis Karavidas
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Dimitrios Petropoulos
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Georgios Zioviris
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Dimitrios Fortis
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Theodora Ntanasi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Andreas Ropokis
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Anestis Karkanis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, 38446 Volos, Greece
| | - Leo Sabatino
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze, Ed. 5, 90128 Palermo, Italy
| | - Dimitrios Savvas
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Georgia Ntatsi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
4
|
Rico-Chávez AK, Franco JA, Fernandez-Jaramillo AA, Contreras-Medina LM, Guevara-González RG, Hernandez-Escobedo Q. Machine Learning for Plant Stress Modeling: A Perspective towards Hormesis Management. PLANTS 2022; 11:plants11070970. [PMID: 35406950 PMCID: PMC9003083 DOI: 10.3390/plants11070970] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 01/11/2023]
Abstract
Plant stress is one of the most significant factors affecting plant fitness and, consequently, food production. However, plant stress may also be profitable since it behaves hormetically; at low doses, it stimulates positive traits in crops, such as the synthesis of specialized metabolites and additional stress tolerance. The controlled exposure of crops to low doses of stressors is therefore called hormesis management, and it is a promising method to increase crop productivity and quality. Nevertheless, hormesis management has severe limitations derived from the complexity of plant physiological responses to stress. Many technological advances assist plant stress science in overcoming such limitations, which results in extensive datasets originating from the multiple layers of the plant defensive response. For that reason, artificial intelligence tools, particularly Machine Learning (ML) and Deep Learning (DL), have become crucial for processing and interpreting data to accurately model plant stress responses such as genomic variation, gene and protein expression, and metabolite biosynthesis. In this review, we discuss the most recent ML and DL applications in plant stress science, focusing on their potential for improving the development of hormesis management protocols.
Collapse
Affiliation(s)
- Amanda Kim Rico-Chávez
- Unidad de Ingeniería en Biosistemas, Facultad de Ingeniería Campus Amazcala, Universidad Autónoma de Querétaro, Carretera Chichimequillas, s/n km 1, El Marqués CP 76265, Mexico; (A.K.R.-C.); (L.M.C.-M.)
| | - Jesus Alejandro Franco
- Escuela Nacional de Estudios Superiores Unidad Juriquilla, UNAM, Querétaro CP 76230, Mexico;
| | - Arturo Alfonso Fernandez-Jaramillo
- Unidad Académica de Ingeniería Biomédica, Universidad Politécnica de Sinaloa, Carretera Municipal Libre Mazatlán Higueras km 3, Col. Genaro Estrada, Mazatlán CP 82199, Mexico;
| | - Luis Miguel Contreras-Medina
- Unidad de Ingeniería en Biosistemas, Facultad de Ingeniería Campus Amazcala, Universidad Autónoma de Querétaro, Carretera Chichimequillas, s/n km 1, El Marqués CP 76265, Mexico; (A.K.R.-C.); (L.M.C.-M.)
| | - Ramón Gerardo Guevara-González
- Unidad de Ingeniería en Biosistemas, Facultad de Ingeniería Campus Amazcala, Universidad Autónoma de Querétaro, Carretera Chichimequillas, s/n km 1, El Marqués CP 76265, Mexico; (A.K.R.-C.); (L.M.C.-M.)
- Correspondence: (R.G.G.-G.); (Q.H.-E.)
| | - Quetzalcoatl Hernandez-Escobedo
- Escuela Nacional de Estudios Superiores Unidad Juriquilla, UNAM, Querétaro CP 76230, Mexico;
- Correspondence: (R.G.G.-G.); (Q.H.-E.)
| |
Collapse
|