1
|
Abdel-Hamed AR, Wahba AS, Khodeer DM, Abdel-Kader MS, Badr JM, Mahgoub S, Hal DM. Metabolomic Profiling and In Vivo Antiepileptic Effect of Zygophyllum album Aerial Parts and Roots Crude Extracts against Pentylenetetrazole-Induced Kindling in Mice. Metabolites 2024; 14:316. [PMID: 38921451 PMCID: PMC11205424 DOI: 10.3390/metabo14060316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
The chemical profiles of both Zygophyllum album (Z. album) aerial parts and roots extracts were evaluated with LC-ESI-TOF-MS/MS analysis. Twenty-four compounds were detected. Among them, some are detected in both the aerial parts and the roots extracts, and others were detected in the aerial parts only. The detected compounds were mainly flavonoids, phenolic compounds, triterpenes and other miscellaneous compounds. Such compounds contribute to the diverse pharmacological activities elicited by the Z. album species. This study aimed to elucidate the antiepileptic effect of Z. album aerial parts and roots crude extracts against pentylenetetrazole (PTZ)-induced kindling in mice. Male albino mice were divided into four groups, eight animals each. All groups, except the control group, were kindled with PTZ (35 mg/kg i.p.), once every alternate day for a total of 15 injections. One group was left untreated (PTZ group). The remaining two groups were treated prior to PTZ injection with either Z. album aerial parts or roots crude extract (400 mg/kg, orally). Pretreatment with either extract significantly reduced the seizure scores, partially reversed the histological changes in the cerebral cortex and exerted antioxidant/anti-inflammatory efficacy evinced by elevated hippocampal total antioxidant capacity and SOD and catalase activities, parallel to the decrement in MDA content, iNOS activity and the TXNIB/NLRP3 axis with a subsequent decrease in caspase 1 activation and a release of IL-1β and IL-18. Moreover, both Z. album extracts suppressed neuronal apoptosis via upregulating Bcl-2 expression and downregulating that of Bax, indicating their neuroprotective and antiepileptic potential. Importantly, the aerial parts extract elicited much more antiepileptic potential than the roots extract did.
Collapse
Affiliation(s)
- Asmaa R. Abdel-Hamed
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (A.R.A.-H.); (A.S.W.)
| | - Alaa S. Wahba
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (A.R.A.-H.); (A.S.W.)
| | - Dina M. Khodeer
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Maged S. Abdel-Kader
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria 21215, Egypt
| | - Jihan M. Badr
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (J.M.B.); (D.M.H.)
| | - Sebaey Mahgoub
- Food Analysis Laboratory, Ministry of Health, Zagazig 44511, Egypt;
| | - Dina M. Hal
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (J.M.B.); (D.M.H.)
| |
Collapse
|
2
|
Li W, Hao S, Li H, An Q, Yang L, Guo B, Xue Z, Liu Y, Guo L, Zheng Y, Zhang D. Exploring Antioxidant and α-Glucosidase Inhibitory Activities in Mulberry Leaves ( Morus alba L.) across Growth Stages: A Comprehensive Metabolomic Analysis with Chemometrics. Molecules 2023; 29:171. [PMID: 38202754 PMCID: PMC10780005 DOI: 10.3390/molecules29010171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Metabolic product accumulation exhibited variations among mulberry (Morus alba L.) leaves (MLs) at distinct growth stages, and this assessment was conducted using a combination of analytical techniques including high-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-mass spectrometry (LC-MS). Multivariate analysis was applied to the data, and the findings were correlated with antioxidant activity and α-glucosidase inhibitory effects in vitro. Statistical analyses divided the 27 batches of MLs at different growth stages into three distinct groups. In vitro assays for antioxidant activity and α-glucosidase inhibition revealed that IC50 values were highest at the Y23 stage, which corresponds to the 'Frost Descends' solar term. In summary, the results of this study indicate that MLs at different growth stages throughout the year can be categorized into three primary growth stages using traditional Chinese solar terms as reference points, based on the observed variations in metabolite content.
Collapse
Affiliation(s)
- Wenjie Li
- Traditional Chinese Medicine Processing Technology Innovation Centre of Hebei Province, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (W.L.); (S.H.); (H.L.); (L.Y.); (B.G.); (Z.X.); (L.G.)
| | - Shenghui Hao
- Traditional Chinese Medicine Processing Technology Innovation Centre of Hebei Province, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (W.L.); (S.H.); (H.L.); (L.Y.); (B.G.); (Z.X.); (L.G.)
| | - Hengyang Li
- Traditional Chinese Medicine Processing Technology Innovation Centre of Hebei Province, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (W.L.); (S.H.); (H.L.); (L.Y.); (B.G.); (Z.X.); (L.G.)
| | - Qi An
- Department of Chinese Materia Medica, Hebei Institute for Drug and Medical Device Control, Shijiazhuang 050200, China; (Q.A.); (Y.L.)
| | - Lina Yang
- Traditional Chinese Medicine Processing Technology Innovation Centre of Hebei Province, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (W.L.); (S.H.); (H.L.); (L.Y.); (B.G.); (Z.X.); (L.G.)
| | - Bing Guo
- Traditional Chinese Medicine Processing Technology Innovation Centre of Hebei Province, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (W.L.); (S.H.); (H.L.); (L.Y.); (B.G.); (Z.X.); (L.G.)
| | - Zijing Xue
- Traditional Chinese Medicine Processing Technology Innovation Centre of Hebei Province, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (W.L.); (S.H.); (H.L.); (L.Y.); (B.G.); (Z.X.); (L.G.)
| | - Yongli Liu
- Department of Chinese Materia Medica, Hebei Institute for Drug and Medical Device Control, Shijiazhuang 050200, China; (Q.A.); (Y.L.)
| | - Long Guo
- Traditional Chinese Medicine Processing Technology Innovation Centre of Hebei Province, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (W.L.); (S.H.); (H.L.); (L.Y.); (B.G.); (Z.X.); (L.G.)
| | - Yuguang Zheng
- Traditional Chinese Medicine Processing Technology Innovation Centre of Hebei Province, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (W.L.); (S.H.); (H.L.); (L.Y.); (B.G.); (Z.X.); (L.G.)
- Department of Pharmaceutical Engineering, Hebei Chemical and Pharmaceutical College, Shijiazhuang 050026, China
| | - Dan Zhang
- Traditional Chinese Medicine Processing Technology Innovation Centre of Hebei Province, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (W.L.); (S.H.); (H.L.); (L.Y.); (B.G.); (Z.X.); (L.G.)
| |
Collapse
|
3
|
Ndlovu SS, Ghazi T, Chuturgoon AA. The Potential of Moringa oleifera to Ameliorate HAART-Induced Pathophysiological Complications. Cells 2022; 11:2981. [PMID: 36230942 PMCID: PMC9563018 DOI: 10.3390/cells11192981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 12/06/2022] Open
Abstract
Highly active antiretroviral therapy (HAART) comprises a combination of two or three antiretroviral (ARV) drugs that are administered together in a single tablet. These drugs target different steps within the human immunodeficiency virus (HIV) life cycle, providing either a synergistic or additive antiviral effect; this enhances the efficiency in which viral replication is suppressed. HIV cannot be completely eliminated, making HAART a lifetime treatment. With long-term HAART usage, an increasing number of patients experience a broadening array of complications, and this significantly affects their quality of life, despite cautious use. The mechanism through which ARV drugs induce toxicity is associated with metabolic complications such as mitochondrial dysfunction, oxidative stress, and inflammation. To address this, it is necessary to improve ARV drug formulation without compromising its efficacy; alternatively, safe supplementary medicine may be a suitable solution. The medicinal plant Moringa oleifera (MO) is considered one of the most important sources of novel nutritionally and pharmacologically active compounds that have been shown to prevent and treat various diseases. MO leaves are rich in polyphenols, vitamins, minerals, and tannins; studies have confirmed the therapeutic properties of MO. MO leaves provide powerful antioxidants, scavenge free radicals, promote carbohydrate metabolism, and repair DNA. MO also induces anti-inflammatory, hepatoprotective, anti-proliferative, and anti-mutagenic effects. Therefore, MO can be a source of affordable and safe supplement therapy for HAART-induced toxicity. This review highlights the potential of MO leaves to protect against HAART-induced toxicity in HIV patients.
Collapse
Affiliation(s)
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Anil A. Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|