1
|
An Enhanced Inverse Filtering Methodology for Drive-By Frequency Identification of Bridges Using Smartphones in Real-Life Conditions. SMART CITIES 2021. [DOI: 10.3390/smartcities4020026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper develops an enhanced inverse filtering-based methodology for drive-by frequency identification of bridges using smartphones for real-life applications. As the vibration recorded on a vehicle is dominated by vehicle features including suspension system and speed as well as road roughness, inverse filtering aims at suppressing these effects through filtering out vehicle- and road-related features, thus mitigating a few of the significant challenges for the indirect identification of the bridge frequency. In the context of inverse filtering, a novel approach of constructing a database of vehicle vibrations for different speeds is presented to account for the vehicle speed effect on the performance of the method. In addition, an energy-based surface roughness criterion is proposed to consider surface roughness influence on the identification process. The successful performance of the methodology is investigated for different vehicle speeds and surface roughness levels. While most indirect bridge monitoring studies are investigated in numerical and laboratory conditions, this study proves the capability of the proposed methodology for two bridges in a real-life scale. Promising results collected using only a smartphone as the data acquisition device corroborate the fact that the proposed inverse filtering methodology could be employed in a crowdsourced framework for monitoring bridges at a global level in smart cities through a more cost-effective and efficient process.
Collapse
|