1
|
Saraswat A, Ram S, Raza MB, Islam S, Sharma S, Omeka ME, Behera B, Jena RK, Rashid A, Golui D. Potentially toxic metals contamination, health risk, and source apportionment in the agricultural soils around industrial areas, Firozabad, Uttar Pradesh, India: a multivariate statistical approach. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:863. [PMID: 37336819 DOI: 10.1007/s10661-023-11476-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Potentially toxic metals (PTMs) contamination in the soil poses a serious danger to people's health by direct or indirect exposure, and generally it occurs by consuming food grown in these soils. The present study assessed the pollution levels and risk to human health upon sustained exposure to PTM concentrations in the area's centuries-old glass industry clusters of the city of Firozabad, Uttar Pradesh, India. Soil sampling (0-15 cm) was done in farmers' fields within a 1 km radius of six industrial clusters. Various environmental (geo-accumulation index, contamination factor, pollution load index, enrichment factor, and ecological risk index) and health risk indices (hazard quotient, carcinogenic risk) were computed to assess the extent of damage caused to the environment and the threat to human health. Results show that the mean concentrations of Cu (33 mg kg-1), Zn (82.5 mg kg-1), and Cr (15.3 mg kg-1) were at safe levels, whereas the levels of Pb, Ni, and Cd exceeded their respective threshold limits. A majority of samples (88%) showed considerable ecological risk due to the co-contamination of these six PTMs. Health risk assessment indicated tolerable cancer and non-cancer risk in both adults and children for all PTMs, except Ni, where adults were exposed to potential threat of cancer. Pearson's correlation study revealed a significant positive correlation between all six metal pairs and conducting principal component analysis (PCA) confirmed the common source of metal pollution. The PC score ranked different sites from highest to lowest according to PTM loads that help to establish the location of the source. Hierarchical cluster analysis grouped different sites into the same cluster based on similarity in PTMs load, i.e., low, medium, and high.
Collapse
Affiliation(s)
- Anuj Saraswat
- Department of Soil Science, G.B. Pant, University of Agriculture and Technology, Pantnagar, Uttarakhand, 263 145, India
| | - Shri Ram
- Department of Soil Science, G.B. Pant, University of Agriculture and Technology, Pantnagar, Uttarakhand, 263 145, India
| | - Md Basit Raza
- ICAR-Indian Institute of Soil and Water Conservation, Research Center, Koraput, Odisha, 763 002, India.
- ICAR-National Academy of Agricultural Research and Management, Hyderabad, Telangana, 500 030, India.
| | - Sadikul Islam
- ICAR-Indian Institute of Soil and Water Conservation, Dehradun, Uttarakhand, 248 195, India
| | - Sonal Sharma
- Department of Soil Science & Agricultural Chemistry, Rajasthan College of Agriculture, MPUAT, Udaipur, Rajasthan, 313 001, India
| | - Michael E Omeka
- Department of Geology, University of Calabar, Cross River State, P.M.B. 1115, Calabar, Nigeria
| | | | - Roomesh K Jena
- ICAR-Indian Institute of Water Management, Bhubaneswar, 751 023, India
| | - Abdur Rashid
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China
- National Centre of Excellence in Geology, University of Peshawar, Peshawar, 25130, Pakistan
| | - Debasis Golui
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110 012, India
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND, 58102, USA
| |
Collapse
|
2
|
Assessment and Remediation of Soils Contaminated by Potentially Toxic Elements (PTE). SOIL SYSTEMS 2022. [DOI: 10.3390/soilsystems6020055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Potentially toxic elements (PTE) can cause significant damage to the environment and human health in the functions of mobility and bioavailability [...]
Collapse
|
3
|
Heavy metals in leathers, artificial leathers, and textiles in the context of quality and safety of use. Sci Rep 2022; 12:5061. [PMID: 35332190 PMCID: PMC8948185 DOI: 10.1038/s41598-022-08911-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/14/2022] [Indexed: 11/08/2022] Open
Abstract
The article presents research findings on the content of arsenic, cadmium, chromium, copper, lead, and zinc in extracts from leathers, artificial leathers intended for footwear components, and textiles. After extracting the metals using an artificial acidic sweat solution, their contents were quantitatively determined by atomic absorption spectrometry. In the cotton textiles, the metal contents were in accordance with the OEKO-TEX limits, while regarding the artificial leathers, only the acrylic knit fur had a too high chromium content (1.1 mg/kg) as compared with the requirements of the STANDARD 100 by OEKO-TEX for products intended for children (< 1.0 mg/kg). The chromium content in lining and upper leather (> 228.0 mg/kg) exceeds the limits for children’s products (< 2.0 mg/kg), but also the less restrictive ones for other products (< 200.0 mg/kg). Regarding the other metals, the leathers met the OEKO-TEX requirements. Approved materials may have elevated heavy metal contents, as demonstrated for chromium. The presence of heavy metals in too large amounts in products is a serious problem due to their allergenic and toxic effect. Therefore, action should be taken aimed at more effective detection and elimination of such products from markets and at reducing the use of chemicals containing harmful metals in manufacturing processes.
Collapse
|