1
|
Hedayati Marzbali M, Hakeem IG, Ngo T, Balu R, Jena MK, Vuppaladadiyam A, Sharma A, Choudhury NR, Batstone DJ, Shah K. A critical review on emerging industrial applications of chars from thermal treatment of biosolids. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122341. [PMID: 39236613 DOI: 10.1016/j.jenvman.2024.122341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Thermochemical treatment is rapidly emerging as an alternative method for the management of stabilised sewage sludges (biosolids) to effectively reduce waste volume, degrade contaminants, and generate valuable products, particularly biochar and hydrochar. Biosolids-derived char has a relatively high concentration of heavy metals compared with agricultural chars but is still applied to land due to its beneficial properties and ability to retain metals. However, non-agricultural applications can provide additional economic and environmental benefits, promote sustainability and support a circular economy. This review identifies extensive non-agricultural opportunity for biosolids biochar, including adsorption, catalysis, energy storage systems, biological process enhancement, and as additives for rubber compounding and construction. Biosolids chars have received limited attention vs agricultural char, and we draw on both areas of literature, as well as evaluating differences between agricultural and biosolids chars. A key opportunity for biosolids biochar in comparison with other materials and agricultural chars is its sustainable and low-cost nature, relatively high metals content, improving catalyst properties, and ability to modify in various stages to tune it to specific applications. The specific opportunities for hydrochar have only received limited attention. Research needs to include better understanding of the benefits and limitations for specific applications, as well as adjacent drivers, including society, regulation, and market and economics.
Collapse
Affiliation(s)
- Mojtaba Hedayati Marzbali
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resource, College of STEM, RMIT University, Bundoora, Victoria, 3083, Australia.
| | - Ibrahim Gbolahan Hakeem
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resource, College of STEM, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Tien Ngo
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, College of STEM, RMIT University, Bundoora, Victoria, 3083, Australia; School of Science, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Rajkamal Balu
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia; ARC Industrial Transformation Research Hub for Transformation of Reclaimed Waste into Engineered Materials and Solutions for a Circular Economy (TREMS), RMIT University, Melbourne, Victoria, 3000, Australia
| | - Manoj Kumar Jena
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, College of STEM, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Arun Vuppaladadiyam
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, College of STEM, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Abhishek Sharma
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, College of STEM, RMIT University, Bundoora, Victoria, 3083, Australia; Department of Chemical Engineering, Manipal University Jaipur, Jaipur, Rajasthan, 303007, India
| | - Namita Roy Choudhury
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia; ARC Industrial Transformation Research Hub for Transformation of Reclaimed Waste into Engineered Materials and Solutions for a Circular Economy (TREMS), RMIT University, Melbourne, Victoria, 3000, Australia
| | - Damien J Batstone
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, College of STEM, RMIT University, Bundoora, Victoria, 3083, Australia; Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Kalpit Shah
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resource, College of STEM, RMIT University, Bundoora, Victoria, 3083, Australia.
| |
Collapse
|
2
|
Ojo O, Vaňková Z, Beesley L, Wickramasinghe N, Komárek M. Evaluating the effectiveness of sulfidated nano zerovalent iron and sludge co-application for reducing metal mobility in contaminated soil. Sci Rep 2024; 14:8322. [PMID: 38594335 PMCID: PMC11004183 DOI: 10.1038/s41598-024-59059-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/06/2024] [Indexed: 04/11/2024] Open
Abstract
Sewage sludge has long been applied to soils as a fertilizer yet may be enriched with leachable metal(loid)s and other pollutants. Sulfidated nanoscale zerovalent iron (S-nZVI) has proven effective at metal sorption; however, risks associated with the use of engineered nanoparticles cannot be neglected. This study investigated the effects of the co-application of composted sewage sludge with S-nZVI for the stabilization of Cd, Pb, Fe, Zn. Five treatments (control, Fe grit, composted sludge, S-nZVI, composted sludge and S-nZVI), two leaching fluids; synthetic precipitation leaching procedure (SPLP) and toxicity characteristic leaching procedure (TCLP) fluid were used, samples were incubated at different time intervals of 1 week, 1, 3, and 6 months. Fe grit proved most efficient in reducing the concentration of extractable metals in the batch experiment; the mixture of composted sludge and S-nZVI was the most effective in reducing the leachability of metals in the column systems, while S-nZVI was the most efficient for reducing about 80% of Zn concentration in soil solution. Thus, the combination of two amendments, S-nZVI incorporated with composted sewage sludge and Fe grit proved most effective at reducing metal leaching and possibly lowering the associated risks. Future work should investigate the longer-term efficiency of this combination.
Collapse
Affiliation(s)
- Omolola Ojo
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha-Suchdol, Czech Republic
| | - Zuzana Vaňková
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha-Suchdol, Czech Republic.
| | - Luke Beesley
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha-Suchdol, Czech Republic
| | - Niluka Wickramasinghe
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha-Suchdol, Czech Republic
| | - Michael Komárek
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha-Suchdol, Czech Republic
| |
Collapse
|
3
|
Silva MEF, Saetta R, Raimondo R, Costa JM, Ferreira JV, Brás I. Forest waste composting-operational management, environmental impacts, and application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32279-0. [PMID: 38372920 DOI: 10.1007/s11356-024-32279-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/25/2024] [Indexed: 02/20/2024]
Abstract
In Portugal, the number of fires and the size of burnt areas are rising dramatically every year, increasing with improper management of agroforestry wastes (AFRs). This work aims to study the composting of these wastes with minimal operational costs and understand the environmental impact and the compost application on burnt soil. Thus, a study of life cycle assessment (LCA) was carried out based on windrow composting processes, considering the avoided environmental impacts associated with the end-product quality and its application as an organic amendment. Three composting piles were made with AFRs from the Residual Biomass Collection Centre (RBCC) in Bodiosa (Portugal). Sewage sludges (SS) from an urban wastewater treatment plant were used as conditioning agent. One pile with AFRs (MC) and another with AFRs and SS (MCS) were managed according to good composting practices. Another pile with the AFRs was developed without management (NMC), thus with a minimal operational cost. Periodically, it was measured several physical and chemical parameters according to standard methodologies. Eleven environmental impacts of compost production, MC and MCS, were analyzed by a LCA tool, and their effect on the growth of Pinus pinea was evaluated, using peat as reference. Composting evolution was expected for both piles. Final composts, MC and MCS, were similar, complying with organic amendment quality parameters. Compost NMC, with no operational management, showed the highest germination index. Piles MC and MCS showed similar environmental impacts, contributing to a negative impact on global warming, acidification, and eutrophication. Greater growth was obtained with application of MCS, followed by MC, and finally, peat. Composting is a sustainable way to valorize AFRs wastes, producing compost that could restore burnt soils and promote plant growth and circular economy.
Collapse
Affiliation(s)
- Maria Elisabete Ferreira Silva
- CISeD-Centre for Research in Digital Services, Polytechnic Institute of Viseu, 3504-510, Viseu, Portugal.
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto (FEUP), R. Dr. Roberto Frias S/N, 4200-465, Porto, Portugal.
| | - Raffaella Saetta
- Department of Civil, Building and Environmental Engineering, University Napoli Federico II, Via Claudio, 21, 80125, Naples, Italy
| | - Roberta Raimondo
- Department of Civil, Building and Environmental Engineering, University Napoli Federico II, Via Claudio, 21, 80125, Naples, Italy
| | - José Manuel Costa
- Research Center for Natural Resources, Environment and Society (CERNAS), Polytechnic Institute of Viseu, 3504-510, Viseu, Portugal
| | - José Vicente Ferreira
- Research Center for Natural Resources, Environment and Society (CERNAS), Polytechnic Institute of Viseu, 3504-510, Viseu, Portugal
| | - Isabel Brás
- CISeD-Centre for Research in Digital Services, Polytechnic Institute of Viseu, 3504-510, Viseu, Portugal
| |
Collapse
|
4
|
D'Imporzano G, Adani F. Measuring the environmental impacts of sewage sludge use in agriculture in comparison with the incineration alternative. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167025. [PMID: 37716680 DOI: 10.1016/j.scitotenv.2023.167025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/22/2023] [Accepted: 09/10/2023] [Indexed: 09/18/2023]
Abstract
This study compares two scenarios for sewage sludge treatment i.e., agricultural-land application (LA) and incineration (INC), in an Italian context (Pavia province, Po Valley). The study was realised within a regional project aiming to obtain useful data to better address future sludge management policies. To do so, an attributional Life Cycle Assessment (LCA) approach was chosen and the multi-functionality was addressed by using system expansion. Results indicated that the scenario INC had higher impacts than scenario LA for the categories linked to process inputs and to the direct emissions of incineration, such as Global warming potential (= + 60 %)., Stratospheric Ozone Depletion, Ozone Formation, Mineral Resource Scarcity and Fossil Resource Scarcity. System expansion i.e., the production of non-renewable fertilisers, played a large role (higher impacts) in the categories related to resource scarcity in the INC scenario. On the other hand, LA scenario showed higher impacts than INC for direct emissions due to fertilisation (Marine and Freshwater Eutrophication, and Particulate Matter). In conclusion, the use of sewage sludge in agriculture seemed to be competitive with the alternative of incineration but both sludge quality and emission reduction during sludge distribution in the field play an important role in the reduction of environmental impacts.
Collapse
Affiliation(s)
- Giuliana D'Imporzano
- Gruppo Ricicla labs., Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli studi di Milano, Via Celoria 2, 20133, Italy.
| | - Fabrizio Adani
- Gruppo Ricicla labs., Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli studi di Milano, Via Celoria 2, 20133, Italy
| |
Collapse
|
5
|
Mabrouk O, Hamdi H, Sayadi S, Al-Ghouti MA, Abu-Dieyeh M, Kogbara R, Al-Sharshani A, Abdalla O, Solim S, Zouari N. Recycling of gas-to-liquid sludge as a potential organic amendment: Effect on soil and cotton properties under hyperarid conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119319. [PMID: 37857211 DOI: 10.1016/j.jenvman.2023.119319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/30/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Gas-to-liquid (GTL) sludge is a specific wastewater treatment by-product, which is generated during the industrial process of natural gas conversion to transportation fuels. This least studied sludge is pathogen-free and rich in organic carbon and plant nutrients. Therefore, it can be reused for soil enhancement as a sustainable management strategy to mitigate landfill gas emissions. In this field study, we compared the performance of soil treatments with GTL sludge to the more conventional chemical fertilizers and cow manure compost for the cultivation of cotton under hyperarid conditions. After a complete growing season, GTL sludge application resulted in the enhancement of soil properties and plant growth compared to conventional inputs. As such, there was a significant dose-dependent increase of soil organic matter (4.01% and 4.54%), phosphorus (534 and 1090 mg kg-1), and cumulative lint yield (4.68 and 5.67 t ha-1) for GTL sludge application rates of 1.5% and 3%, respectively. The produced fiber quality was adequate for an upland cotton variety (Gossypium hirsutum var. MAY 344) and appeared more dependent on the prevailing climate conditions than soil treatments. On the other hand, the adverse effects generally related to industrial sludge reuse were not significant and did not affect the designed agro-environmental system. Accordingly, plants grown on GTL sludge-amended soils showed lower antioxidant activity despite significant salinity increase. In addition, the concentrations of detected heavy metals in soil were within the standards' limits, which did not pose environmental issues under the described experimental conditions. Leachate analysis revealed no risks for groundwater contamination with phytotoxic metals, which were mostly retained by the soil matrix. Therefore, recycling GTL sludge as an organic amendment can be a sustainable solution to improve soil quality and lower carbon footprint. To reduce any environmental concerns, an application rate of 1.5% could be provisionally recommended since a two-fold increase in sludge dose did not result in a significant yield improvement.
Collapse
Affiliation(s)
- Oumaima Mabrouk
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Helmi Hamdi
- Food-Water-Waste-Sustainability (FWWS) Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar.
| | - Sami Sayadi
- Food-Water-Waste-Sustainability (FWWS) Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Mohammad A Al-Ghouti
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Mohammed Abu-Dieyeh
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Reginald Kogbara
- Environmental Engineering Department, Izmir Institute of Technology, Izmir, Turkey
| | - Ali Al-Sharshani
- Qatar Shell Research and Technology Center, QSTP LLC, Doha, Qatar
| | - Osman Abdalla
- Department of Agricultural Research, Ministry of Municipality, Doha, Qatar
| | - Sabah Solim
- Qatar Shell Research and Technology Center, QSTP LLC, Doha, Qatar
| | - Nabil Zouari
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar.
| |
Collapse
|
6
|
Popoola LT, Olawale TO, Salami L. A review on the fate and effects of contaminants in biosolids applied on land: Hazards and government regulatory policies. Heliyon 2023; 9:e19788. [PMID: 37810801 PMCID: PMC10556614 DOI: 10.1016/j.heliyon.2023.e19788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
The increase in world population growth and its resultant increase in industrial production to meet its need, have continued to raise the volume of wastewater received by treatment plant facilities. This has expectedly, led to an upsurge in the volume of sewage sludge and biosolids generated from wastewater treatment systems. Biosolids are best managed by application on land because of their agronomic benefits. However, this usage has been discovered to negatively affect humans and impact the environment due to the accumulation of minute concentrations of contaminants still present in the biosolid after treatment, hence the need for government regulations. This review article examined the fate and effects of pollutants, especially persistent organic pollutants (PoPs) of concern and emerging contaminants found in biosolids used for land applications, and also discussed government regulations on biosolid reuse from the perspectives of the two major regulations governing biosolid land application-the EU's Sludge Directive and USEPA's Part 503 Rule, in an attempt to draw attention to their outdated contents since enactment, as they do not currently meet the challenges of biosolid land application and thus, require a comprehensive update. Any update efforts should focus on USEPA's Part 503 Rule, which is less stringent on the allowable concentration of biosolid pollutants. Furthermore, an update should include specific regulations on new and emerging contaminants and persistent organic pollutants (PoPs) such as microplastics, pharmaceutical and personal care products (P&PCPs), surfactants, endocrine-disrupting chemicals, flame retardants, pathogens, and organic pollutants; further reduction of heavy metal standard limits, and consideration of soil phosphate-metal interactions to regulate biosolid agronomic loading rate. Future biosolid research should focus on the concentration of TCS, TCC, and emerging pharmaceuticals, as well as Microplastic transport in biosolid-amended soils, soil-plant transfer mechanism, and metabolism of PFAs in the soils; all of which will inform government policies on biosolid application on land.
Collapse
Affiliation(s)
- Lekan Taofeek Popoola
- Department of Chemical and Petroleum Engineering, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Theophilus Ogunwumi Olawale
- Department of Chemical and Petroleum Engineering, University of Lagos, Akoka, Yaba, Lagos State, Nigeria
- Environmental Engineering Research Unit, Department of Chemical Engineering, Lagos State University, Epe, Lagos State, Nigeria
| | - Lukumon Salami
- Environmental Engineering Research Unit, Department of Chemical Engineering, Lagos State University, Epe, Lagos State, Nigeria
| |
Collapse
|
7
|
Wang Z, Anand D, He Z. Phosphorus Recovery from Whole Digestate through Electrochemical Leaching and Precipitation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37364242 DOI: 10.1021/acs.est.3c02843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Phosphorus (P) recovery from biosolids can play an important role in a circular economy. Herein, an electrochemical phosphorus recovery cell (EPRC) was proposed and examined to recover P from municipal whole digestate via simultaneous leaching and precipitation. The anode of the EPRC released P as aqueous PO43--P through acidification, achieving the highest leaching efficiency of 93.3% under a current density of 30 A m-2. When the leached P solution was treated in the cathode, native metals including Ca and Fe facilitated electrochemically mediated PO43--P precipitation (EMP) and precipitated ∼99% of the leached P in the cathode chamber. Around 54.3-78.7% of total P existed in two harvestable forms: suspended solids in the cathode effluent and immobilized P in the cathode chamber. The solid products contained 28.42-33.51% of P2O5, comparable to the high-grade phosphate rock. Higher current densities reduced cathode scaling and resulted in a lower content of heavy metals in the solid products. An acidic solution was reused three times and effectively maintained cathode performance during a 42-cycle operation, achieving a consistent P recovery efficiency of nearly 80%. Those results have demonstrated the feasibility of the EPRC for recovering P from P-rich solid wastes.
Collapse
Affiliation(s)
- Zixuan Wang
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Daran Anand
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Zhen He
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
8
|
Contangelo A, Esperschuetz J, Robinson BH. Trace Element Uptake by Willows Used for the Phytoremediation of Biosolids. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010243. [PMID: 36676193 PMCID: PMC9862635 DOI: 10.3390/life13010243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
The land application of biosolids can result in the unacceptable accumulation of Trace Elements (TEs) in agricultural soil and potentially introduce xenobiotics and pathogens into the food chain. Phytoremediation of biosolids aims to minimize this risk, while producing valuable biomass. Willows, well known to accumulate zinc (Zn), are used extensively in farming systems for soil conservation, shelter and as feed supplements with demonstrable health benefits. Potentially, biosolids phytoremediation could occur on marginal lands adjacent to farmlands where willows are grown for supplementary fodder. We aimed to determine the uptake and distribution of Zn and other TEs in willows grown on soils amended with biosolids and biosolids blended with biochar, with a view to their use as stock fodder. In the Canterbury Region, New Zealand, we grew Salix 'tangaio' (S. matsudana X S. alba) in a greenhouse trial and field study. The biomass production of the willows was unaffected by biosolids and increased by the biosolids+biochar mixture. The addition of 4% biosolids (w/w) to the soil resulted in a foliar Zn concentration of 600-1000 mg kg-1, some 25 times higher than the average New Zealand pasture. Zinc concentrations were highest in the bottom leaves and increased throughout the season. Biosolids addition doubled the copper (Cu) concentration to 10 mg kg-1. Adding biochar to the system reduced the plant uptake of Cu and to a lesser extent Zn, while cadmium (Cd) uptake was unaffected. For Cd, Cu, and Zn, plant uptake was a function of the Ca(NO3)2-extractable concentration, both in greenhouse experiments and the field trial. Future work should determine the changes in plant TE uptake over several growing seasons.
Collapse
Affiliation(s)
- Angela Contangelo
- School of Agricultural Science, Forestry, Food and Environmental Sciences, University of Basilicata, 75100 Matera, Italy
| | - Juergen Esperschuetz
- School of Forestry, Faculty of Engineering, University of Canterbury, Ilam Campus, Christchurch 8041, New Zealand
| | - Brett H. Robinson
- School of Physical and Chemical Sciences, Faculty of Science, University of Canterbury, Ilam Campus, Christchurch 8041, New Zealand
- Correspondence:
| |
Collapse
|