1
|
Irvine D, Jobson SA, Wilson JP. Evaluating Changes in Mental Workload in Indoor and Outdoor Ultra-Distance Cycling. Sports (Basel) 2022; 10:67. [PMID: 35622476 PMCID: PMC9146483 DOI: 10.3390/sports10050067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/17/2022] [Accepted: 04/25/2022] [Indexed: 01/27/2023] Open
Abstract
Whilst increasing mental workload has been shown to have a detrimental effect on cycling performance and more generally to increase the risk of harm, no studies have measured how mental workload changes as a function of ultra-distance cycling, indoors or outdoors. Our objective was to measure the difference in mental workload, as indicated by changes in EEG theta power, components of HRV and psychomotor vigilance and as reported using the 'NASA Task Load Index questionnaire', before and after a 5 h indoor ride and outdoor ride completed at 65% of functional threshold power. Results of the NASA-TLX indicated the mental demand of outdoor cycling to be significantly less than that of indoor cycling. There were significant differences in the PVT results between the pre and the post outdoor ride average and median response times. The slowest 10% PVT responses were significantly slower pre than post the indoor ride. There were significant differences in HRV between pre and post outdoor and indoor rides, specifically, in the average RR intervals, RMSSD (ms2), LFPower (ms2), NN50. There were modest changes in indicators of mental workload during an ultra-distance cycle ride. As such, mental workload during ultra-distance cycling is unlikely to be a contributory factor to decreases in performance or to an increased likelihood of accident and injury.
Collapse
Affiliation(s)
- Dominic Irvine
- Epiphanies LLP, Hopyard Farm, Glanbaiden, Govilon, Abergavenny NP7 9SE, UK
| | - Simon A. Jobson
- Faculty of Health & Wellbeing, University of Winchester, Sparkford Road, Winchester SO22 4NR, UK;
| | - John P. Wilson
- Management School, The University of Sheffield, Conduit Road, Sheffield S10 1FL, UK;
| |
Collapse
|
2
|
Bouillod A, Soto-Romero G, Grappe F, Bertucci W, Brunet E, Cassirame J. Caveats and Recommendations to Assess the Validity and Reliability of Cycling Power Meters: A Systematic Scoping Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22010386. [PMID: 35009945 PMCID: PMC8749704 DOI: 10.3390/s22010386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/24/2021] [Accepted: 12/31/2021] [Indexed: 05/05/2023]
Abstract
A large number of power meters have become commercially available during the last decades to provide power output (PO) measurement. Some of these power meters were evaluated for validity in the literature. This study aimed to perform a review of the available literature on the validity of cycling power meters. PubMed, SPORTDiscus, and Google Scholar have been explored with PRISMA methodology. A total of 74 studies have been extracted for the reviewing process. Validity is a general quality of the measurement determined by the assessment of different metrological properties: Accuracy, sensitivity, repeatability, reproducibility, and robustness. Accuracy was most often studied from the metrological property (74 studies). Reproducibility was the second most studied (40 studies) property. Finally, repeatability, sensitivity, and robustness were considerably less studied with only 7, 5, and 5 studies, respectively. The SRM power meter is the most used as a gold standard in the studies. Moreover, the number of participants was very different among them, from 0 (when using a calibration rig) to 56 participants. The PO tested was up to 1700 W, whereas the pedalling cadence ranged between 40 and 180 rpm, including submaximal and maximal exercises. Other exercise conditions were tested, such as torque, position, temperature, and vibrations. This review provides some caveats and recommendations when testing the validity of a cycling power meter, including all of the metrological properties (accuracy, sensitivity, repeatability, reproducibility, and robustness) and some exercise conditions (PO range, sprint, pedalling cadence, torque, position, participant, temperature, vibration, and field test).
Collapse
Affiliation(s)
- Anthony Bouillod
- EA4660, C3S Health-Sport Department, Sports University, 25000 Besancon, France; (A.B.); (F.G.)
- French Cycling Federation, 78180 Saint Quentin, France;
- LAAS-CNRS, Université de Toulouse, CNRS, 31000 Toulouse, France;
- Professional Cycling Team FDJ, 77230 Moussy-le-Vieux, France
| | | | - Frederic Grappe
- EA4660, C3S Health-Sport Department, Sports University, 25000 Besancon, France; (A.B.); (F.G.)
- Professional Cycling Team FDJ, 77230 Moussy-le-Vieux, France
| | - William Bertucci
- EA7507, Laboratoire Performance, Santé, Métrologie, Société, 51100 Reims, France;
| | | | - Johan Cassirame
- EA4660, C3S Health-Sport Department, Sports University, 25000 Besancon, France; (A.B.); (F.G.)
- EA7507, Laboratoire Performance, Santé, Métrologie, Société, 51100 Reims, France;
- Mtraining, R&D Division, 25480 Ecole Valentin, France
- Correspondence: ; Tel.: +33-6-8781-8295
| |
Collapse
|
3
|
Are the Assioma Favero Power Meter Pedals a Reliable Tool for Monitoring Cycling Power Output? SENSORS 2021; 21:s21082789. [PMID: 33921002 PMCID: PMC8071453 DOI: 10.3390/s21082789] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 11/17/2022]
Abstract
This study aimed to examine the validity and reliability of the recently developed Assioma Favero pedals under laboratory cycling conditions. In total, 12 well-trained male cyclists and triathletes (VO2max = 65.7 ± 8.7 mL·kg−1·min−1) completed five cycling tests including graded exercises tests (GXT) at different cadences (70–100 revolutions per minute, rpm), workloads (100–650 Watts, W), pedaling positions (seated and standing), vibration stress (20–40 Hz), and an 8-s maximal sprint. Tests were completed using a calibrated direct drive indoor trainer for the standing, seated, and vibration GXTs, and a friction belt cycle ergometer for the high-workload step protocol. Power output (PO) and cadence were collected from three different brand, new pedal units against the gold-standard SRM crankset. The three units of the Assioma Favero exhibited very high within-test reliability and an extremely high agreement between 100 and 250 W, compared to the gold standard (Standard Error of Measurement, SEM from 2.3–6.4 W). Greater PO produced a significant underestimating trend (p < 0.05, Effect size, ES ≥ 0.22), with pedals showing systematically lower PO than SRM (1–3%) but producing low bias for all GXT tests and conditions (1.5–7.4 W). Furthermore, vibrations ≥ 30 Hz significantly increased the differences up to 4% (p < 0.05, ES ≥ 0.24), whereas peak and mean PO differed importantly between devices during the sprints (p < 0.03, ES ≥ 0.39). These results demonstrate that the Assioma Favero power meter pedals provide trustworthy PO readings from 100 to 650 W, in either seated or standing positions, with vibrations between 20 and 40 Hz at cadences of 70, 85, and 100 rpm, or even at a free chosen cadence.
Collapse
|
4
|
Validity of the Favero Assioma Duo Power Pedal System for Measuring Power Output and Cadence. SENSORS 2021; 21:s21072277. [PMID: 33805150 PMCID: PMC8037746 DOI: 10.3390/s21072277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022]
Abstract
Cycling power meters enable monitoring external loads and performance changes. We aimed to determine the concurrent validity of the novel Favero Assioma Duo (FAD) pedal power meter compared with the crank-based SRM system (considered as gold standard). Thirty-three well-trained male cyclists were assessed at different power output (PO) levels (100-500 W and all-out 15-s sprints), pedaling cadences (75-100 rpm) and cycling positions (seating and standing) to compare the FAD device vs. SRM. No significant differences were found between devices for cadence nor for PO during all-out efforts (p > 0.05), although significant but small differences were found for efforts at lower PO values (p < 0.05 for 100-500 W, mean bias 3-8 W). A strong agreement was observed between both devices for mean cadence (ICC > 0.87) and PO values (ICC > 0.81) recorded in essentially all conditions and for peak cadence (ICC > 0.98) and peak PO (ICC > 0.99) during all-out efforts. The coefficient of variation for PO values was consistently lower than 3%. In conclusion, the FAD pedal-based power meter can be considered an overall valid system to record PO and cadence during cycling, although it might present a small bias compared with power meters placed on other locations such as SRM.
Collapse
|
5
|
The Application of Critical Power, the Work Capacity above Critical Power (W'), and its Reconstitution: A Narrative Review of Current Evidence and Implications for Cycling Training Prescription. Sports (Basel) 2020; 8:sports8090123. [PMID: 32899777 PMCID: PMC7552657 DOI: 10.3390/sports8090123] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022] Open
Abstract
The two-parameter critical power (CP) model is a robust mathematical interpretation of the power–duration relationship, with CP being the rate associated with the maximal aerobic steady state, and W′ the fixed amount of tolerable work above CP available without any recovery. The aim of this narrative review is to describe the CP concept and the methodologies used to assess it, and to summarize the research applying it to intermittent cycle training techniques. CP and W′ are traditionally assessed using a number of constant work rate cycling tests spread over several days. Alternatively, both the 3-min all-out and ramp all-out protocols provide valid measurements of CP and W′ from a single test, thereby enhancing their suitability to athletes and likely reducing errors associated with the assumptions of the CP model. As CP represents the physiological landmark that is the boundary between heavy and severe intensity domains, it presents several advantages over the de facto arbitrarily defined functional threshold power as the basis for cycle training prescription at intensities up to CP. For intensities above CP, precise prescription is not possible based solely on aerobic measures; however, the addition of the W′ parameter does facilitate the prescription of individualized training intensities and durations within the severe intensity domain. Modelling of W′ reconstitution extends this application, although more research is needed to identify the individual parameters that govern W′ reconstitution rates and their kinetics.
Collapse
|