1
|
Squires E, Walshe IH, Dodd A, Broadbelt E, Hayman O, McHugh MP, Howatson G. Acute Dosing Strategy with Vistula Tart Cherries for Recovery of Strenuous Exercise-A Feasibility Study. Nutrients 2024; 16:2709. [PMID: 39203845 PMCID: PMC11357489 DOI: 10.3390/nu16162709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 09/03/2024] Open
Abstract
Tart cherry (TC) consumption has become a popular nutritional strategy for recovery, particularly for the attenuation of markers associated with muscle damage. However, there are relatively few studies that have examined an acute dosing strategy. The aim of this pilot study was to explore the feasibility of using powdered Vistula TC for recovery following a bout of muscle-damaging exercise. Twenty-two recreationally active participants (mean ± SD age, stature, and mass were 23 ± 3 years old, 173 ± 10 cm, and 74 ± 17 kg, respectively) performed 40 (5 sets of 8 repetitions) maximal lengthening contractions of the elbow flexors. The participants were randomised to receive either a spray-dried TC extract or a calorie-matched placebo (12 TC, 10 placebo) for 4 days in total, starting on the day of exercise. Dependent measures of maximal voluntary contraction (MVC), muscle soreness (assessed via visual analogue scales; VAS), pain pressure threshold (PPT), range of motion (ROM), and upper arm limb girth were taken at baseline (pre), 24, 48, and 72 h post damaging exercise. There were significant changes over time among all the variables (MVC, VAS, PPT, ROM, and girth, p ≤ 0.014). There were no significant differences between the conditions for any of the variables (MVC, VAS, PPT, ROM, and girth, p > 0.3). The TC group did not recover at an accelerated rate compared to the placebo. This study provides initial insights into the use of powdered Vistula TC and its effect following strenuous (damaging) exercise bouts. Vistula TC did not improve recovery when taken acutely following a bout of damaging exercise to the elbow flexors.
Collapse
Affiliation(s)
- Emma Squires
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (E.S.); (I.H.W.); (M.P.M.)
| | - Ian H. Walshe
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (E.S.); (I.H.W.); (M.P.M.)
| | - Alex Dodd
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (E.S.); (I.H.W.); (M.P.M.)
| | - Edward Broadbelt
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (E.S.); (I.H.W.); (M.P.M.)
| | - Oliver Hayman
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (E.S.); (I.H.W.); (M.P.M.)
- School of Cardiovascular and Metabolic Health, BHF Glasgow Cardiovascular Research Centre, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G11 6EW, UK
| | - Malachy P. McHugh
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (E.S.); (I.H.W.); (M.P.M.)
- Nicholas Institute of Sports Medicine and Athletic Trauma, New York, NY 10065, USA
| | - Glyn Howatson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (E.S.); (I.H.W.); (M.P.M.)
- Water Research Group, North West University, Potchefstroom 2531, South Africa
| |
Collapse
|
2
|
Kimble R, Jones K, Howatson G. The effect of dietary anthocyanins on biochemical, physiological, and subjective exercise recovery: a systematic review and meta-analysis. Crit Rev Food Sci Nutr 2023; 63:1262-1276. [PMID: 34402657 DOI: 10.1080/10408398.2021.1963208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Anthocyanins (ACN), the sub-class of (poly)phenols responsible for the red-blue-purple pigmentation of fruit and vegetables, have gained considerable interest in sport and exercise research due to their potential to facilitate exercise recovery. A systematic literature search was performed using PubMed, The Cochrane Library, MEDLINE, SPORTDiscus and CINAHL. Thirty nine studies were included and the standardized mean difference (Hedges g) for creatine kinase (CK), anti-oxidative and inflammatory markers, strength, power and delayed onset muscle soreness (DOMS) indices were pooled in separate meta-analyses; meta-regression was also performed on reported ACN dose. Immediately post-exercise there was an increase in antioxidant capacity (g: 0.56) and reduced C reactive protein (g: -0.24) and tumor necrosis factor α (g: -40); p ≤ 0.02. Strength was improved with ACN at all time points (g: 0.45-0.67). DOMS (g: -0.23) was lower 24 hours post-exercise and power was improved 24 hours (g: 0.62) and 48 hours (g: 0.57) post exercise. The CK was lower 48 hours post-exercise (g: -0.31) and there was a trend for a positive association with ACN dose (p = 0.057). This systematic review provides new data showing ACN-rich foods promote functional and subjective recovery likely due to the antioxidant and anti-inflammatory properties of ACN.
Collapse
Affiliation(s)
- Rachel Kimble
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
- Water Research Group, North West University, Potchefstroom, South Africa
| |
Collapse
|
3
|
Roberts JD, Lillis J, Pinto JM, Willmott AGB, Gautam L, Davies C, López-Samanes Á, Del Coso J, Chichger H. The Impact of a Natural Olive-Derived Phytocomplex (OliPhenolia ®) on Exercise-Induced Oxidative Stress in Healthy Adults. Nutrients 2022; 14:5156. [PMID: 36501186 PMCID: PMC9737690 DOI: 10.3390/nu14235156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2022] Open
Abstract
The role of natural polyphenols in reducing oxidative stress and/or supporting antioxidant mechanisms, particularly relating to exercise, is of high interest. The aim of this study was to investigate OliPhenolia® (OliP), a biodynamic and organic olive fruit water phytocomplex, rich in hydroxytyrosol (HT), for the first time within an exercise domain. HT bioavailability from OliP was assessed in fifteen healthy volunteers in a randomized, double-blind, placebo controlled cross-over design (age: 30 ± 2 yrs; body mass: 76.7 ± 3.9 kg; height: 1.77 ± 0.02 m), followed by a separate randomized, double-blinded, cohort trial investigating the short-term impact of OliP consumption (2 × 28 mL∙d−1 of OliP or placebo (PL) for 16-days) on markers of oxidative stress in twenty-nine recreationally active participants (42 ± 2 yrs; 71.1 ± 2.1 kg; 1.76 ± 0.02 m). In response to a single 28 mL OliP bolus, plasma HT peaked at 1 h (38.31 ± 4.76 ng∙mL−1), remaining significantly elevated (p < 0.001) until 4 h. Plasma malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) and HT were assessed at rest and immediately following exercise (50 min at ~75% V˙O2max then 10 min intermittent efforts) and at 1 and 24 h post-exercise, before and after the 16-day supplementation protocol. Plasma HT under resting conditions was not detected pre-intervention, but increased to 6.3 ± 1.6 ng·mL−1 following OliP only (p < 0.001). OliP demonstrated modest antioxidant effects based on reduced SOD activity post-exercise (p = 0.016) and at 24 h (p ≤ 0.046), and increased GSH immediately post-exercise (p = 0.009) compared with PL. No differences were reported for MDA and CAT activity in response to the exercise protocol between conditions. The phenolic compounds within OliP, including HT, may have specific antioxidant benefits supporting acute exercise recovery. Further research is warranted to explore the impact of OliP following longer-term exercise training, and clinical domains pertinent to reduced oxidative stress.
Collapse
Affiliation(s)
- Justin D. Roberts
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Joseph Lillis
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Jorge Marques Pinto
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Ashley G. B. Willmott
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Lata Gautam
- School of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Christopher Davies
- School of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Álvaro López-Samanes
- Exercise Physiology Group, Faculty of Health Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Juan Del Coso
- Centre for Sport Studies, Rey Juan Carlos University, 28943 Fuenlabrada, Spain
| | - Havovi Chichger
- School of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK
| |
Collapse
|
4
|
Effects of Polyphenol Consumption on Recovery in Team Sport Athletes of Both Sexes: A Systematic Review. Nutrients 2022; 14:nu14194085. [PMID: 36235737 PMCID: PMC9573146 DOI: 10.3390/nu14194085] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/08/2022] Open
Abstract
Previous studies have shown that polyphenol consumption enhances recovery of the muscle after exercise-induced muscle damage (EIMD). However, EIMD markers have not been studied by sport type. The main aim of this research was to perform a systematic review to determine the efficacy of polyphenolic consumption in increasing muscle recovery for performing team sport skills. Eligible studies included, following PICOS structure, presented at least one of the following outcomes: maximal isometric voluntary contraction (MVIC); countermovement jump (CMJ); delayed onset muscle soreness (DOMS); 20 m sprint test; creatine kinase (CK); and C-reactive protein (hsCRP). A structured search was carried out following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines. The risk of bias was assessed using the PEDro scale tool. The review showed a possibly positive impact of polyphenol consumption on recovery after EIMD in team sports athletes. No differences were found between sexes. Considering the limitations, there is moderate to very low certainty of polyphenol supplementation effects on recovery of team sport females and males. A dose of 60 mL/day, divided into two times per day, ingested for >7 days may present positive effects on muscle function and muscle soreness in team sport athletes. However, further investigation is required, specifically in females.
Collapse
|
5
|
Rickards L, Lynn A, Barker ME, Russell M, Ranchordas MK. Comparison of the polyphenol content and in vitro antioxidant capacity of fruit-based nutritional supplements commonly consumed by athletic and recreationally active populations. J Int Soc Sports Nutr 2022; 19:336-348. [PMID: 35813849 PMCID: PMC9261743 DOI: 10.1080/15502783.2022.2091412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Background Methods Results Conclusion
Collapse
Affiliation(s)
- Lee Rickards
- Sheffield United Footballl Club. Sport Science and Medical Department. Sheffield, UK
- Sport & Physical Activity Research Centre, Health Research Institute, Sheffield Hallam University, UK
| | - Anthony Lynn
- Food Group, College of Business, Technology & Engineering Sheffield Hallam University, Sheffield, UK
- Advanced Wellbeing Research Centre, Sheffield, UK
| | - Margo E. Barker
- Food Group, College of Business, Technology & Engineering Sheffield Hallam University, Sheffield, UK
| | - Mark Russell
- School of Social and Health Sciences, Leeds Trinity University, Leeds, UK
| | - Mayur K. Ranchordas
- Sport & Physical Activity Research Centre, Health Research Institute, Sheffield Hallam University, UK
- Advanced Wellbeing Research Centre, Sheffield, UK
| |
Collapse
|
6
|
Gonçalves AC, Gaspar D, Flores-Félix JD, Falcão A, Alves G, Silva LR. Effects of Functional Phenolics Dietary Supplementation on Athletes' Performance and Recovery: A Review. Int J Mol Sci 2022; 23:4652. [PMID: 35563043 PMCID: PMC9102074 DOI: 10.3390/ijms23094652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, many efforts have been made to identify micronutrients or nutritional strategies capable of preventing, or at least, attenuating, exercise-induced muscle damage and oxidative stress, and improving athlete performance. The reason is that most exercises induce various changes in mitochondria and cellular cytosol that lead to the generation of reactive species and free radicals whose accumulation can be harmful to human health. Among them, supplementation with phenolic compounds seems to be a promising approach since their chemical structure, composed of catechol, pyrogallol, and methoxy groups, gives them remarkable health-promoting properties, such as the ability to suppress inflammatory processes, counteract oxidative damage, boost the immune system, and thus, reduce muscle soreness and accelerate recovery. Phenolic compounds have also already been shown to be effective in improving temporal performance and reducing psychological stress and fatigue. Therefore, the aim of this review is to summarize and discuss the current knowledge on the effects of dietary phenolics on physical performance and recovery in athletes and sports practitioners. Overall, the reports show that phenolics exert important benefits on exercise-induced muscle damage as well as play a biological/physiological role in improving physical performance.
Collapse
Affiliation(s)
- Ana C. Gonçalves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Dário Gaspar
- Department of Sport Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal;
| | - José David Flores-Félix
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
| | - Amílcar Falcão
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal;
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
- CPIRN-UDI/IPG—Center of Potential and Innovation of Natural Resources, Research Unit for Inland Development (UDI), Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| |
Collapse
|
7
|
McHugh MP. "Precovery" Versus Recovery: Understanding the role of cherry juice in exercise recovery. Scand J Med Sci Sports 2022; 32:940-950. [PMID: 35119142 PMCID: PMC9306613 DOI: 10.1111/sms.14141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/19/2022] [Accepted: 02/02/2022] [Indexed: 11/27/2022]
Abstract
Cherry juice has become a standard component of athlete recovery strategies. This review covers the history of cherry juice as a recovery drink to give context to its current use. Fifteen studies were identified that included a measure of muscle function, soreness, or inflammation on the days following exercise and had an exercise insult sufficient to assess the effectiveness of the tart cherry intervention. Eight studies used a concentrated juice, three used a juice from fresh‐frozen cherries, two used a tart cherry concentrate gel, and two used a tart cherry powder. The effective juice dose was specific to the type of drink (fresh‐frozen versus concentrate) but dose‐response studies are lacking, and thus, the optimal dose for any specific type of cherry juice is not known. Timing of the dosing regimen is a critical factor. Studies have uniformly shown that muscle function will recover faster on the days after exercise if juice is provided for several days prior to exercise. Effects on soreness or systemic inflammation are more equivocal. The available evidence does not support a regimen that begins on the day of exercise or post‐exercise. Tart cherry powder did not enhance any metric of recovery on the days after exercise. In conclusion, the term recovery implies an intervention that is introduced after an exercise insult. The term “precovery” may be preferable to describe interventions that should be introduced on the days prior to exercise to facilitate recovery on the days after exercise. The evidence supports cherry juice as a precovery intervention across a range of athletic activities.
Collapse
Affiliation(s)
- Malachy P McHugh
- Nicholas Institute of Sports Medicine and Athletic Trauma, Lenox Hill Hospital at MEETH, 210 East 64 Street New York, New York, 10065
| |
Collapse
|
8
|
Naughton M, McLean S, Scott TJ, Weaving D, Solomon C. Quantifying Fatigue in the Rugby Codes: The Interplay Between Collision Characteristics and Neuromuscular Performance, Biochemical Measures, and Self-Reported Assessments of Fatigue. Front Physiol 2021; 12:711634. [PMID: 34776996 PMCID: PMC8586499 DOI: 10.3389/fphys.2021.711634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/30/2021] [Indexed: 11/25/2022] Open
Abstract
Locomotor and collision actions that rugby players complete during match-play often lead to substantial fatigue, and in turn, delays in recovery. The methods used to quantify post-match fatigue and recovery can be categorised as subjective and objective, with match-related collision characteristics thought to have a primary role in modulating these recovery measures. The aim of this review was to (1) evaluate how post-match recovery has been quantified in the rugby football codes (i.e., rugby league, rugby union, and rugby sevens), (2) to explore the time-course of commonly used measures of fatigue post-match, and (3) to investigate the relationships between game-related collisions and fatigue metrics. The available evidence suggests that upper-, and lower-body neuromuscular performance are negatively affected, and biomarkers of muscular damage and inflammation increase in the hours and days following match-play, with the largest differences being at 12–36 h post-match. The magnitude of such responses varies within and between neuromuscular performance (Δ ≤ 36%, n = 13 studies) and tissue biomarker (Δ ≤ 585%, n = 18 studies) measures, but nevertheless appears strongly related to collision frequency and intensity. Likewise, the increase in perceived soreness in the hours and days post-match strongly correlate to collision characteristics across the rugby football codes. Within these findings, there are specific differences in positional groups and recovery trajectories between the codes which relate to athlete characteristics, and/or locomotor and collision characteristics. Finally, based on these findings, we offer a conceptual model of fatigue which details the multidimensional latent structure of the load to fatigue relationship contextualised to rugby. Research to date has been limited to univariate associations to explore relationships between collision characteristics and recovery, and multivariate methods are necessary and recommended to account for the latent structures of match-play external load and post-match fatigue constructs. Practitioners should be aware of the typical time windows of fatigue recovery and utilise both subjective and objective metrics to holistically quantify post-match recovery in rugby.
Collapse
Affiliation(s)
- Mitchell Naughton
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia.,Centre for Human Factors and Sociotechnical Systems, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Scott McLean
- Centre for Human Factors and Sociotechnical Systems, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Tannath J Scott
- New South Wales Rugby League, Sydney Olympic Park, NSW, Australia.,Carnegie Applied Rugby Research Centre, Leeds Beckett University, Leeds, United Kingdom
| | - Dan Weaving
- Carnegie Applied Rugby Research Centre, Leeds Beckett University, Leeds, United Kingdom.,Leeds Rhinos Rugby League Club, Leeds, United Kingdom
| | - Colin Solomon
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia.,Centre for Human Factors and Sociotechnical Systems, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| |
Collapse
|
9
|
Rickards L, Lynn A, Harrop D, Barker ME, Russell M, Ranchordas MK. Effect of Polyphenol-Rich Foods, Juices, and Concentrates on Recovery from Exercise Induced Muscle Damage: A Systematic Review and Meta-Analysis. Nutrients 2021; 13:nu13092988. [PMID: 34578866 PMCID: PMC8465563 DOI: 10.3390/nu13092988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 01/18/2023] Open
Abstract
Objectives. To determine the effects of consuming polyphenol-rich foods, juices and concentrates on recovery from exercise-induced muscle damage (EIMD). Method. Eligibility criteria. Randomised and quasi-randomised placebo-controlled trials with a parallel or cross-over design evaluating the effects of consuming polyphenol-rich foods, juices and concentrates on recovery from EIMD in humans. Eligible studies included at least one of the primary outcome measures: maximal isometric voluntary contraction; MIVC, delayed onset muscle soreness; DOMS, or countermovement jump; CMJ. Information sources. AMED, Cochrane Central Register of Controlled Trials, International Clinical Trials Registry Platform, PUBMED, SCOPUS (Elsevier), SPORTDiscus (EBSCO), and the UK Clinical Trials Gateway were searched from inception to September 2020. Risk of bias and quality of evidence. Risk of bias was assessed using Cochrane Risk of Bias 2 tool. Quality of the evidence was assessed using the Grading of Recommendations, Assessment, Development and Evaluation framework. Synthesis of results. Random effects models were used to determine the effect of polyphenol supplementation on recovery from EIMD. Data are presented as standardised mean differences (SMD) with 95% confidence intervals (CI). Results. Included studies. Twenty-five studies were included; 15 had a parallel, and 10 had a cross-over design. A total of 527 participants (male: n = 425; female: n = 102) were included in the meta-analysis. Synthesis of results. Consumption of polyphenol-rich foods, juices and concentrates accelerated recovery of MIVC immediately post-exercise (SMD = 0.23, 95% CI 0.04, 0.42; p = 0.02; low-quality evidence), 24 h (SMD = 0.39, 95% CI 0.15, 0.62; p = 0.001; low-quality evidence), 48 h (SMD = 0.48, 95% CI 0.28, 0.67; p < 0.001; moderate-quality evidence), 72 h (SMD = 0.29, 95% CI 0.11, 0.46; p = 0.001; low-quality evidence) and 96 h post-exercise (SMD = 0.50, 95% CI 0.16, 0.83; p = 0.004; very low-quality evidence). DOMS was reduced at 24 h (SMD = −0.29, 95% CI −0.47, −0.11; p = 0.002; low-quality evidence), 48 h (SMD = −0.28, 95% CI −0.46, −0.09; p = 0.003; low-quality evidence) and 72 h post-exercise (SMD = −0.46, 95% CI −0.69, −0.24; p < 0.001; very low-quality evidence). CMJ height was greater immediately post-exercise (SMD = 0.27, 95% CI 0.01, 0.53; p = 0.04; low-quality evidence), at 24 h (SMD = 0.47, 95% CI 0.11, 0.83; p = 0.01; very low-quality evidence), 48 h (SMD = 0.58, 95% CI 0.24, 0.91; p < 0.001; very low-quality evidence) and 72 h post-exercise (SMD = 0.57, 95% CI 0.03, 1.10; p = 0.04; very low-quality evidence). Polyphenol supplementation did not alter creatine kinase, c-reactive protein, and interleukin−6 at any time points. At 72 h post-exercise, protein carbonyls (SMD = −0.64, 95% CI −1.14, −0.14; p = 0.01) were reduced. Discussion. Limitations of evidence. Risk of bias was high for 10 studies and moderate for 15. Sensitivity analyses excluding the high risk of bias studies reduced the SMDs for MIVC and DOMS, and for CMJ effects at 24 and 48 h were no longer statistically significant. Interpretation. Consuming polyphenol-rich foods, juices and concentrates accelerated recovery of muscle function while reducing muscle soreness in humans. Maximal benefit occurred 48–72 h post-exercise, however, the certainty of the evidence was moderate to very low. Supplementation could be useful when there is limited time between competitive events and impaired recovery could negatively impact performance.
Collapse
Affiliation(s)
- Lee Rickards
- Academy of Sport & Physical Activity, Sheffield Hallam University, Sheffield S10 2BP, UK; (L.R.); (D.H.)
| | - Anthony Lynn
- Department of Service Sector, Management Business School, Sheffield Hallam University, Sheffield S1 1WP, UK; (A.L.); (M.E.B.)
| | - Deborah Harrop
- Academy of Sport & Physical Activity, Sheffield Hallam University, Sheffield S10 2BP, UK; (L.R.); (D.H.)
| | - Margo E. Barker
- Department of Service Sector, Management Business School, Sheffield Hallam University, Sheffield S1 1WP, UK; (A.L.); (M.E.B.)
| | - Mark Russell
- School of Social and Health Sciences, Leeds Trinity University, Leeds LS18 5HD, UK;
| | - Mayur K. Ranchordas
- Academy of Sport & Physical Activity, Sheffield Hallam University, Sheffield S10 2BP, UK; (L.R.); (D.H.)
- Correspondence: ; Tel.: +44-11-4225-5678
| |
Collapse
|
10
|
Sabou VR, O'Leary MF, Liu Y, Brown PN, Murch S, Bowtell JL. Review of Analytical Methods and Reporting of the Polyphenol Content of Tart Cherry Supplements in Human Supplementation Studies Investigating Health and Exercise Performance Effects: Recommendations for Good Practice. Front Nutr 2021; 8:652094. [PMID: 33842524 PMCID: PMC8032894 DOI: 10.3389/fnut.2021.652094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022] Open
Abstract
Tart cherries (TC) are a rich source of polyphenols that elicit antioxidant and anti-inflammatory effects. As a consequence, the effects of TC derived supplements on markers of human health, exercise performance and sleep have been investigated. Supplementation protocols have been highly variable across studies and the dose of bioactive compounds used has often been poorly characterized. Specific and non-specific analytical methods were employed for measuring the total polyphenol and anthocyanin content in TC supplements. This review critically analyses the supplementation protocols and the analytical methods used for the characterization of TC supplements, culminating in recommendations for good practice in the analysis and reporting of the polyphenol content and profile of TC products. A literature search was conducted using PubMed/Medline and Web of Science up to May 4th, 2020, including studies published in all years prior. Only articles written in English that provided a TC dietary supplement as opposed to fresh whole TC were included in this review. Forty-three studies were identified as eligible and included for analysis in this review. The studies investigated the effects of TC supplementation on various aspects of human health, exercise recovery and performance and sleep. Twenty studies conducted an analysis of TC supplement and reported total polyphenol/anthocyanin content. Six studies did not report the polyphenol content of the TC supplement used. Seventeen studies reported the TC supplement polyphenol content but this was derived from previously published studies and presumably different supplement batches. The duration of the supplementation protocol ranged from acute supplementation to 84 days, meanwhile the total polyphenol and anthocyanin dose ranged from 143 to 2,140 mg/day and 15 to 547 mg/day, respectively. Due to the variety of specific and non-specific analytical methods used, the relative efficacy of different doses and polyphenol blends cannot reliably be extrapolated from critical analysis of the literature. Future studies should conduct an analysis of the study supplement batch. In addition to analysis and reporting of total polyphenol content, specific analytical methods such as HPLC UV/MS should be used to quantify total and individual anthocyanin contents.
Collapse
Affiliation(s)
- Vlad R Sabou
- College of Life and Environmental Sciences, Sport and Health Sciences, Exeter University, Exeter, United Kingdom
| | - Mary F O'Leary
- College of Life and Environmental Sciences, Sport and Health Sciences, Exeter University, Exeter, United Kingdom
| | - Ying Liu
- Natural Health and Food Products Research Groups, BC Institute of Technology, Burnaby, BC, Canada
| | - Paula N Brown
- Natural Health and Food Products Research Groups, BC Institute of Technology, Burnaby, BC, Canada
| | - Susan Murch
- Department of Chemistry, University of British Columbia, Kelowna, BC, Canada
| | - Joanna L Bowtell
- College of Life and Environmental Sciences, Sport and Health Sciences, Exeter University, Exeter, United Kingdom
| |
Collapse
|
11
|
Tart Cherry Supplementation and Recovery From Strenuous Exercise: A Systematic Review and Meta-Analysis. Int J Sport Nutr Exerc Metab 2021; 31:154-167. [PMID: 33440334 DOI: 10.1123/ijsnem.2020-0145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/16/2020] [Accepted: 09/30/2020] [Indexed: 11/18/2022]
Abstract
The aim of this study was to determine the efficacy of tart cherry (TC) supplementation on recovery following strenuous exercise. A systematic review and meta-analysis were conducted using studies investigating TC supplementation on measures of muscle soreness, muscular strength, muscular power, creatine kinase, C-reactive protein, Interleukin-6, and tumor necrosis factor alpha. A literature search ending in July 2020 was conducted in three databases (SPORTDiscus, Web of Science, and PubMed). Data from 14 studies were extracted and pooled for analysis. Tart cherry supplementation had a small beneficial effect in reducing muscle soreness (effect size [ES] = -0.44, 95% confidence interval [CI] [-0.87, -0.02]). A moderate beneficial effect was observed for recovery of muscular strength (ES = -0.78, 95% CI [-1.11, -0.46]). A moderate effect was observed for muscular power (ES = -0.53, 95% CI [-0.77, -0.29]); a further subgroup analysis on this variable indicated a large effect of TC supplementation on recovery of jump height (ES = -0.82, 95% CI [-1.18, -0.45]) and a small significant effect of supplementation on sprint time (ES = -0.32, 95% CI [-0.60, -0.04]). A small effect was observed for both C-reactive protein (ES = -0.46, 95% CI [-0.93, -0.00]) and Interleukin-6 (ES = -0.35, 95% CI [-0.68, -0.02]. No significant effects were observed for creatine kinase and tumor necrosis factor alpha. These results indicate that the consumption of a TC supplement can aid aspects of recovery from strenuous exercise.
Collapse
|
12
|
Sabou V, Wangdi J, O’Leary MF, Kelly VG, Bowtell JL. Use, Practices and Attitudes of Sports Nutrition and Strength and Conditioning Practitioners towards Tart Cherry Supplementation. Sports (Basel) 2020; 9:sports9010002. [PMID: 33374926 PMCID: PMC7821940 DOI: 10.3390/sports9010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 01/12/2023] Open
Abstract
Tart cherry (TC) supplementation has been shown to accelerate post-exercise recovery, enhance endurance performance and improve sleep duration and quality. This study aimed to identify the use, practices and attitudes of sports nutrition and strength and conditioning practitioners towards tart cherry supplementation. Thirty-five practitioners anonymously completed an online survey investigating their use, practices and attitudes towards tart cherry supplements. Forty-six percent of the responders were currently recommending TC supplements, 11% had previously recommended TC supplements and 26% have not previously recommended TC supplements but were planning on doing so in the future. Of those recommending TC, 50% recommended or were planning on recommending TC supplements to enhance exercise recovery and 26% to improve sleep duration and quality. Acute supplementation and daily use during multi-day competition or demanding training blocks with a 2–3-day pre-load were the most reported supplementation recommendations (28% and 18%, respectively). Fifty-two percent of responders indicated uncertainty about the daily polyphenol dose to recommend as part of a TC supplementation protocol. Despite the high use and interest from sports nutrition and strength and conditioning practitioners in TC supplements, their practices did not align with the protocols found to be effective within the literature.
Collapse
Affiliation(s)
- Vlad Sabou
- Sport and Health Sciences, St Luke’s Campus, University of Exeter, Heavitree Road, Exeter EX1 2LU, UK; (V.S.); (J.W.); (M.F.O.)
| | - Jimmy Wangdi
- Sport and Health Sciences, St Luke’s Campus, University of Exeter, Heavitree Road, Exeter EX1 2LU, UK; (V.S.); (J.W.); (M.F.O.)
- School of Human Movement and Nutrition, University of Queensland, Brisbane, QLD 4072, Australia
| | - Mary F. O’Leary
- Sport and Health Sciences, St Luke’s Campus, University of Exeter, Heavitree Road, Exeter EX1 2LU, UK; (V.S.); (J.W.); (M.F.O.)
| | - Vincent G. Kelly
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Joanna L. Bowtell
- Sport and Health Sciences, St Luke’s Campus, University of Exeter, Heavitree Road, Exeter EX1 2LU, UK; (V.S.); (J.W.); (M.F.O.)
- Correspondence:
| |
Collapse
|
13
|
Morehen JC, Clarke J, Batsford J, Barrow S, Brown AD, Stewart CE, Morton JP, Close GL. Montmorency tart cherry juice does not reduce markers of muscle soreness, function and inflammation following professional male rugby League match-play. Eur J Sport Sci 2020; 21:1003-1012. [PMID: 32672095 DOI: 10.1080/17461391.2020.1797181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Rugby League (RL) match-play causes muscle damage, inflammation and symptoms of fatigue. To facilitate recovery, nutritional interventions are often employed, including Montmorency cherry juice (MC). We assessed the effects of MC on recovery following RL match-play in eleven male professional RL players who played in two matches (7-days apart) with MC or placebo (PLB) supplemented for 5-days pre-match, matchday and 2-days post-match. Blood was collected 48h pre-match, half-time, within 30-mins of full-time and 48h post-match to assess Interleukin concentrations (IL-6, -8 -10). Self-reported sleep, fatigue, mood, stress, and muscle-soreness were assessed 24h pre and 24 and 48h post-matches with muscle function assessed 48h pre and 48h post-match. No differences in distance covered (6334 ± 1944 Vs 6596 ± 1776m) and total collisions (28 ± 11 Vs 29 ± 13) were observed between both matches. There was a small albeit significant increase in IL-6, -8 and -10 concentrations pre to post-match in both PLB (IL-6: 0.83 ± 0.92 Vs 2.91 ± 1.40, IL-8: 2.16 ± 1.22 Vs 3.91 ± 1.61 and IL-10: 2.51 ± 2.14 Vs 0.61 ± 0.50 pg.mL-1) and MC groups (IL-6: 0.53 ± 0.53 Vs 2.24 ± 1.73, IL-8: 1.85 ± 0.96 Vs 3.46 ± 1.12 and IL-10: 0.48 ± 0.50 Vs 2.54 ± 2.10 pg.mL-1), although there were no significant differences between groups (P<0.05). Likewise, there was a small but significant increase in muscle soreness (P=0.01) and reduction in CMJ (P=0.003) with no significant differences between groups. No significant changes in sleep, fatigue or mood (P>0.05) were observed pre to post-match or between groups. These data suggest MC does not affect the modest changes observed in cytokine responses and markers of recovery from RL match-play.Keywords: Team Sport, Nutrition, Performance, Recovery.
Collapse
Affiliation(s)
- James C Morehen
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Jon Clarke
- Warrington Wolves Rugby League Club, The Halliwell Jones Stadium, Mike Gregory Way, Warrington, UK
| | - Jake Batsford
- Warrington Wolves Rugby League Club, The Halliwell Jones Stadium, Mike Gregory Way, Warrington, UK
| | - Stuart Barrow
- Warrington Wolves Rugby League Club, The Halliwell Jones Stadium, Mike Gregory Way, Warrington, UK
| | - Alexander D Brown
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Claire E Stewart
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - James P Morton
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Graeme L Close
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|