Glassbrook DJ, Fuller JT, Alderson JA, Wills JA, Doyle TLA. Changes in acceleration load as measured by inertial measurement units manifest in the upper body after an extended running task.
J Sports Sci 2022;
40:1467-1475. [PMID:
35675331 DOI:
10.1080/02640414.2022.2086520]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The purpose of this study was to investigate the behaviour of physiological load measures as well as ground reaction forces (GRF) and acceleration load during a prolonged running task that simulated the running demands of an intermittent team sport. Nineteen males completed a maximal aerobic fitness test and an extended running protocol across two sessions. Participants wore a portable metabolic system, and four inertial measurement units (IMU), one on each foot, the lower back and upper back. GRF were measured via an instrumented treadmill. Change in metabolic, IMU and GRF variables across five blocks during the running protocol were assessed using a one-way repeated measures ANOVA. The running protocol elicited large increases in heart rate and oxygen consumption over time. No statistically significant changes in any peak impact accelerations were observed. Resultant acceleration area under the curve (AUC) increased at the lower and upper back locations but was unchanged at the foot. GRF active peak but not impact peak increased during the prolonged run. The results of this study indicate that the effect of an extended running task on IMU measures of external mechanical load is manifested in the upper body, and is effectively measured by AUC.
Collapse