1
|
Al-Mur BA, Pugazhendi A. A novel conversion of marine macroalgal biomass to biofuel (biohydrogen) via calcium hypochlorite induced dispersion. CHEMOSPHERE 2022; 308:136355. [PMID: 36087729 DOI: 10.1016/j.chemosphere.2022.136355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/10/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollution due to the consumption of non-renewable energy lead the search for alternative eco-friendly renewable fuel. The study details the biohydrogen production efficiency by potential macroalgal (Ulva reticulata) biomass improved by a disperser combined with calcium hypochlorite pretreatment technology. Calcium hypochlorite was added to decrease the surface energy of the medium induced by sole disperser pretreatment. Optimum condition for algal disperser treatment was 10,000 rpm with 30 min as dispersion time. The specific energy spent for the disintegration of the macroalgal biomass was 1231.58 kJ/kg TS. COD solubilization rate of 11.79% was attained with mechanical pretreatment whereas increased to 20.23% with combined pretreatment. Combination of disperser with calcium hypochlorite significantly reduced the specific energy input spent to 500 kJ/kg TS. The amount of organic materials such as carbohydrates, proteins and lipids released were 680 mg/L, 283 mg/L and 136 mg/L respectively. Thus, the combinative pretreatment with disperser rotor speed (10,000 rpm) for pretreatment time (12 min) and calcium hypochlorite dosage (0.1 g/g) derived as optimum condition for effective solubilization of macroalgal biomass. Biohydrogen production potential was maximum in the macroalgae pretreated with both disperser and calcium hypochlorite recorded highest yield (54.6 mL H2/g COD) compared to the macroalgae pretreated with disperser alone (31.7 mL H2/g COD) and untreated macroalgae (11.5 mL H2/g COD).
Collapse
Affiliation(s)
- Bandar A Al-Mur
- Department of Environmental Science, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Arulazhagan Pugazhendi
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
2
|
Microbial Biogas Production from Pork Gelatine. HYDROGEN 2022. [DOI: 10.3390/hydrogen3020012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This research describes the results of the anaerobic digestion of gelatine as a potential hydrogen source with heat-shocked inoculum. The concentrations of applied gelatine were of VSS (volatile suspended solids) ranging from 10 g VSS/L to 30 g VSS/L. The initial process pH was 5.5, and, depending on the concentration, reached pH values from 7.5 to 7.8 after 55 days. Although the inoculum was heat-shocked in 30 g VSS/L of collagen, the process that occurred was hydrogenotrophic anaerobic digestion. In gelatine concentrations below 30 g VSS/L, hydrogen production was dominant only during the first 5 days of the experiments. Then, there was a change from dark fermentation to hydrogenotrophic methane production. The optimal hydrogen and methane yields resulted from the concentrations of 10 g VSS/L (7.65 mL ± 0.01 mL H2/g VSS and 3.49 ± 0.01 L CH4/g VSS). Additionally, 10 g VSS/L had the lowest accumulated emission of hydrogen sulphide (10.3 ± 0.01 mL of H2S), while 30 g VSS/L (0.440 ± 0.01mL H2S/g VSS) produced the lowest yield. After a lag time, the hydrogen production and hydrogen sulphide grew with a specific ratio, depending on the concentration. The hydrogen sulphide emission and sulphur added analysis proved that hydrogen sulphide originating from biogas created by bacteria remains longer than that from a substrate.
Collapse
|
3
|
Sołowski G, Konkol I, Shalaby M, Cenian A. Rapid hydrogen generation from cotton wastes by mean of dark fermentation. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03247-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AbstractDark fermentation of textile wastes is discussed in the paper. In the experiment cotton wastes were fermented. Before fermentation the cotton was hydrolyzed using 0.1 M HCl acidic solution. The inoculum was pretreated by means of heat shock for 0.5 h at 105 °C. The fermentation was carried out under mesophilic conditions at a load of 5 g VSS/L, and pH 5. Oxygen was added in small quantities during fermentation. The oxygen flow rates (OFR) were between 0.3 and 1.0 mL/h. The fermentation was carried out for a few days at temperatures between 40 and 43 °C. Hydrogenesis prevailed at the lower temperature (40 °C) and methanogenesis at the higher (43 °C). Conversion of cotton waste to methane (3.4%) was slightly higher than conversion to hydrogen (2.6%). The highest hydrogen production was obtained for OFR 0.8 mL/h and the percentage of hydrogen in biogas was 43%. At higher temperatures (43 °C) no hydrogen production was observed
Collapse
|
4
|
Bhatt AH, Ren ZJ, Tao L. Value Proposition of Untapped Wet Wastes: Carboxylic Acid Production through Anaerobic Digestion. iScience 2020; 23:101221. [PMID: 32563151 PMCID: PMC7305404 DOI: 10.1016/j.isci.2020.101221] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/28/2020] [Accepted: 05/28/2020] [Indexed: 02/02/2023] Open
Abstract
Although traditional anaerobic digestion (AD) process to produce methane-rich biogas from wet waste is deep-rooted, high carbon footprint and its low value as compared with other renewable sources demand advanced strategies to avoid its production. An emerging conversion pathway to arrest methanogenesis for producing value-added fuels and chemicals instead of biogas is sought as a sustainable alternative. This research provides a comprehensive analysis on current technology development, process challenges, applications, and economics for producing high-value short-chain carboxylic acids from AD of wet wastes. We show that (1) the theoretical energy yields of acids equal or exceed biogas, and (2) the cost of these acids is competitive with those produced from chemical markets, making this economically viable for mass production. With global abundance of wet waste feedstocks, this process of short-chain acid production provides a promising alternative to conventional biogas production technology, while achieving waste management and carbon mitigation goals.
Collapse
Affiliation(s)
- Arpit H Bhatt
- Strategic Energy Analysis Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Zhiyong Jason Ren
- Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Ling Tao
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.
| |
Collapse
|
5
|
Evaluation of MSW Compost and Digestate Mixtures for a Circular Economy Application. SUSTAINABILITY 2020. [DOI: 10.3390/su12073042] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In order to obtain a product with agronomic characteristics and biological stability consistent with the EU fertilizer decree for the market of EU fertilising products three different mixtures obtained from sludge digestate from municipal wastewater treatment plant, fresh compost and mature compost have been studied and characterized. For the experimental activity, the raw samples and three mixing ones were collected for the analytical characterization. The biological stability was then assessed for all samples using different stability criteria such as Specific Oxygen Uptake Rate, Rottegrad self-heating factor, Residual biogas potential. Specific enzymatic tests provided information about the status of nutrient cycles (C, P and S) and to overall microbial activity. Physical (bulk density, particle density, air capacity and water content), nutritional (C, N, P, K, Mg, and Ca) and toxicological properties (seedling growth tests on Lepidum sativum L., Cucumis sativus L., Lolium perenne L.) were also evaluated in order to assess the feasibility of agronomic use of the digestate-based mixtures. All the digestate-based mixtures responded to the main characteristics of compost quality requirements proposed in national and international regulations. The evidence found in this study highlighted that the strategy of mixing of sludge digestates with the composts allowed to mitigate the environmental risk posed by each starting material and to valorize their nutrient content.
Collapse
|
6
|
Bromatological, Proximate and Ultimate Analysis of OFMSW for Different Seasons and Collection Systems. SUSTAINABILITY 2020. [DOI: 10.3390/su12072639] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In order to study the quality of organic fractions of municipal solid waste (OFMSW), five different municipalities in Tuscany were chosen for sampling according to the peculiarities of their collection systems. The five collection systems selected were sampled four times: during March, June, September and December, for a total of 20 picking analyses. In addition, emphasis was also given to the study of the variability of OFMSW composition related to ultimate, proximate and bromatological analyses. Road container collection systems proved to have a higher content of non-compostable and undesirable fractions (22%±1%) when compared to door-to-door systems (6% ± 1%). During months with lower temperature (March and December), the garden waste content in the OFMSW was negligible, with kitchen waste prevailing. This altered the physical chemical composition of OFMSW, which had a lower lignin content and higher methane production in the months with lower temperatures (272 ± 23 NLCH4 kgTVS−1) compared to June and September (238 ± 14 NLCH4 kgTVS−1). In general, the Tuscan OFMSW had a higher dry matter content (42%) than observed in previous studies. In conclusion, the result could direct possible future operators of anaerobic digestion plants towards the choice of dry and semi-dry technologies.
Collapse
|
7
|
Biodrying of the Light Fraction from Anaerobic Digestion Pretreatment in Order to Increase the Total Recovery Rate. Processes (Basel) 2020. [DOI: 10.3390/pr8030276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Two pilot-scale tests were carried out to assess if biodrying could be an effective process for the treatment of light fraction produced by an hydromechanical pre-treatment in an anaerobic digestion plant. The trials were performed using two pilot-scale stainless steel cylindrical reactors of 750 L capacity. Two tests were performed: in Test 1, only the light fraction was used; in Test 2, the light fraction was mixed with a bulking agent composed of garden and pruning waste. In Test 2, the highest temperature (71 °C) in a short time (8 days) was reached. An average water content reduction of 78% in Test 1 and 61% in Test 2 was measured, leading to similar reductions of weight (47–48%) and volume (27–29%). A high biological stability was measured on the final light fraction samples collected from both the tests. Furthermore, the lower heating value obtained after the biodrying treatment complies with the quality specification of the European standard on refuse-derived fuels.
Collapse
|
8
|
Characterization of Excavated Waste of Different Ages in View of Multiple Resource Recovery in Landfill Mining. SUSTAINABILITY 2020. [DOI: 10.3390/su12051780] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
With the aim of examining the forcing factors in postmanagement landfills, in this study, excavation waste from nonhazardous municipal waste landfill in Tuscany was characterized for the first time. The specific objective was to estimate the feasibility of sampling and analyzing the excavated waste in order to define its properties and provide information about possible landfill mining projects. Based on the biochemical methane potential assays, it was shown that the excavated waste had not yet been stabilized (i.e., with a production of 52.2 ± 28.7 NlCH4/kgTS) in the landfill, probably due to the low excavated waste moisture content (36% ± 6% w/w). Furthermore, excavated waste has a high calorific value, i.e., 15.2 ± 4.1 MJ/kg; the quantity of combustibles in the industrial shredder waste (16 MJ/kg) was rather modest compared to that of municipal solid waste (20.8 MJ/Kg). In conclusion, during large scale excavation of the landfill, it was possible to evaluate how a dedicated treatment plant could be designed to treat and select waste which might appear in a different category. For excavated industrial waste, detailed mechanical sorting may be convenient for end-of-waste recovery to improve calorific value.
Collapse
|
9
|
Baldi F, Iannelli R, Pecorini I, Polettini A, Pomi R, Rossi A. Influence of the pH control strategy and reactor volume on batch fermentative hydrogen production from the organic fraction of municipal solid waste. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2019; 37:478-485. [PMID: 30736725 PMCID: PMC6484781 DOI: 10.1177/0734242x19826371] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
Three different experimental sets of runs involving batch fermentation assays were performed to evaluate the influence of the experimental conditions on biological hydrogen production from the source-separated organic fraction of municipal solid waste collected through a door-to-door system. The fermentation process was operated with and without automatic pH control, at a pH of 5.5 and 6.5, food-to-microorganism ratios of 1/3 and 1/1 (wet weight basis) and with different working volumes (0.5 and 3 L). The experimental results showed that the pH control strategy and the reactor volume did not affect the final hydrogen production yield but played an important role in determining the time evolution of the process. Indeed, although the different experimental conditions tested yielded comparable hydrogen productions (with maximum average values ranging from 68.5 to 88.5 NLH2 (kgTVSOF)-1), the automatic pH control strategy improved the process from the kinetic viewpoint resulting in a t95 reduction from an average of 34.9 h without automatic pH control to an average of 19.5 h.
Collapse
Affiliation(s)
- Francesco Baldi
- DIEF, Department of Industrial Engineering, University of Florence, Italy
| | - Renato Iannelli
- DESTEC – Department of Energy, Systems, Territory and Construction Engineering, University of Pisa, Italy
| | - Isabella Pecorini
- DESTEC – Department of Energy, Systems, Territory and Construction Engineering, University of Pisa, Italy
| | - Alessandra Polettini
- DICEA, Department of Civil and Environmental Engineering, University of Rome “La Sapienza”, Italy
| | - Raffaella Pomi
- DICEA, Department of Civil and Environmental Engineering, University of Rome “La Sapienza”, Italy
| | - Andreina Rossi
- DICEA, Department of Civil and Environmental Engineering, University of Rome “La Sapienza”, Italy
| |
Collapse
|