1
|
Lakhiar MT, Sanmargaraja S, Olanrewaju A, Lim CH, Ponniah V, Mathalamuthu AD. Energy retrofitting strategies for existing buildings in Malaysia: A systematic review and bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12780-12814. [PMID: 38270761 DOI: 10.1007/s11356-024-32020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
This paper comprehensively examines passive and active energy retrofit strategies as a highly effective approach for reducing building energy consumption and mitigating CO2 emissions while enhancing comfort and sustainability. The paper further examines energy simulation software and assesses the integration of renewable energy systems in building to improve energy efficiency. The review used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology, ensuring a rigorous and comprehensive analysis. In addition, the study utilized bibliometric analysis with VOSviewer to provide valuable insights into the research trends and influential publications in building energy retrofits. Bibliometric analysis reveals strong collaboration among 17 authors, emphasizing their significant contributions. Keywords like energy retrofitting and efficiency are prominent, indicating their importance in academic literature. Findings show passive strategies are more effective in reducing energy consumption, though a combined approach with active strategies can yield optimal results. Retrofitting presents challenges, such as substantial initial costs and regulatory barriers. User acceptance is crucial, considering potential disruptions. The review highlights the importance of energy simulation software, with tools like EnergyPlus, eQUEST, and IES VE identified for evaluating and identifying cost-effective retrofit measures in building performance. By providing comprehensive insights into the various strategies and tools available for retrofitting buildings to achieve energy efficiency and sustainability goals, this review serves as an authoritative resource for building owners, managers, and professionals in the building industry. It offers invaluable guidance for informed decision-making and facilitates implementing effective, energy-efficient, and sustainable building retrofitting practices.
Collapse
Affiliation(s)
- Muhammad Tarique Lakhiar
- Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti Bandar Barat, 31900, Kampar, Perak, Malaysia.
| | - Shalini Sanmargaraja
- Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - AbdulLateef Olanrewaju
- Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - Chong Hooi Lim
- Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - Vignes Ponniah
- Building Services Engineering, Trafford College Group, Talbot Road, Stretford, M32 0XH, Manchester, UK
| | - Anselm Dass Mathalamuthu
- School of Architecture, Tunku Abdul Rahman Universiti of Management and Technology, Jalan Genting Kelang, Setapak, 53300, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Climate Adaptation Heuristic Planning Support System (HPSS): Green-Blue Strategies to Support the Ecological Transition of Historic Centres. LAND 2022. [DOI: 10.3390/land11060773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The issue of climate has posed major and urgent challenges for the global community. The European Green Deal sets out a new growth strategy aimed at turning the European Union into a just and prosperous society, with a modern, resource-efficient, and competitive economy, which will no longer generate net greenhouse gas emissions by 2050. Cities in this context are committed on several fronts to rapid adaptation to improve their resilience capacity. The historic centre is the most vulnerable part of a city, with a reduced capacity for adaptation, but also the densest of values, which increase the complexity of the challenge. This study proposes an integrated tool, Heuristic Planning Support System (HPSS), aimed at exploring green-blue strategies for the historic centre. The tool is integrated with classic Planning Support System (PSS), a decision process conducted from the perspective of heuristic approach and Geographic Information System (GIS). It comprises modules for technical assessment, environmental assessment Life Cycle Assessment (LCA), economic assessment Life Cycle Cost (LCC), Life Cycle Revenues (LCR), and Discounted Cash Flow Analysis (DCFA) extended to the life cycle of specific interventions, the Multi-Attribute Value Theory (MAVT) for the assessment of energy, environmental, identity, landscape, and economic values. The development of a tool to support the ecological transition of historic centres stems from the initiative of researchers at the University of Catania, who developed it based on the preferences expressed by a group of decision makers, that is, a group of local administrators, scholars, and professionals. The proposed tool supports the exploration of green-blue strategies identified by decision makers and the development of the plan for the historic district of Borgata di Santa Lucia in Syracuse.
Collapse
|
3
|
Building Performance Simulations and Architects against Climate Change and Energy Resource Scarcity. EARTH 2022. [DOI: 10.3390/earth3010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In Europe, 40% of the total energy is consumed by buildings; in this sense, building performance simulation tools (BPSTs) play a key role; however, the use of these tools by architects is deficient. Therefore, this study aims to detect the architects’ perception on BPSTs. To this end, an online survey was conducted to determine the selection criteria of these BPSTs and non-users, to investigate the reasons for not using the tools. The outcomes showed that there was a wide gap between architects and the management of simulation programs in Spain, mainly due to the lack of training. BPSTs are described as a kind of intellect amplifiers, as they are perceived as powerful allies between professors and students of architecture and between architects and architectural design; therefore, through BPSTs, sustainability is taken very much into consideration to make buildings more energy efficient. Therefore, it is primarily concluded that further and higher education must undergo significant improvement to use simulations as part of the architectural design.
Collapse
|
4
|
Determinants of Electrical and Thermal Energy Consumption in Hospitals According to Climate Zones in Poland. ENERGIES 2021. [DOI: 10.3390/en14227585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Energy use in hospitals is higher than in other public buildings, so improving energy efficiency in healthcare buildings is a significant challenge in this sector of engineering. For this, it is necessary to know the various determinants of energy consumption. Until now, the main factor affecting energy consumption in healthcare facilities studied in the literature was hospital capacity. However, the commonly used variables connected with hospital size and the number of beds do not take into account the medical activities carried out in these buildings. Assuming that energy consumption in hospitals is multiple and shaped by many factors that overlap, not only on an individual level but also on a higher scale level, this study devises a more integrated approach to its determinants. This study aims to investigate the determinants of electrical energy costs (EEC) and thermal energy costs (TEC) in Polish hospitals with regard to factors related to their size, work intensity and climate zones. The analysis was carried out using financial and resource data from all Polish hospitals for the years 2010–2019. The study used a multivariate backward stepwise regression analysis. In order to use climate as a moderating variable, a sample of Polish hospitals from 16 Polish NUTS 2 was divided into four climate zones. This article provides new empirical evidence on the determinants of electricity consumption in Polish hospitals related to their size and medical activity, taking into account climate zone as a moderating variable. The results of the analysis show that both electricity and heat consumption in hospitals are positively related to the number of doctors, beds and the number of medical operations performed. As expected, larger hospitals seem to use more energy. Moreover, there is regional heterogeneity in energy consumption in hospitals related to the climatic zone in which they operate. The conducted analysis shows that Polish hospitals located in the warmest climatic zone are characterized by higher energy consumption than hospitals in the coldest zone. It especially regards EEC in surgery hospitals. The warmer the climate zones, the higher intensity in terms of the number of surgeries, the higher EEC. In terms of nonsurgical hospitals, the influence of climate zone on EEC was not observed. Knowing the factors influencing energy consumption in hospitals can facilitate the correct adoption of an energy-saving strategy in the health sector, which is a reasonable response to climate change and supports a healthy and sustainable future.
Collapse
|
5
|
BIM and BEM Methodologies Integration in Energy-Efficient Buildings Using Experimental Design. BUILDINGS 2021. [DOI: 10.3390/buildings11100491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Linking Building Information Modelling and Building Energy Modelling methodologies appear as a tool for the energy performance analysis of a dwelling, being able to build the physical model via Autodesk Revit and simulating the energy modeling with its complement Autodesk Insight. A residential two-story house was evaluated in five different locations within distinct climatic zones to reduce its electricity demand. Experimental Design is used as a methodological tool to define the possible arrangement of results emitted via Autodesk Insight that exhibits the minor electric demand, considering three variables: Lighting efficiency, Plug-Load Efficiency, and HVAC systems. The analysis concluded that while the higher the efficiency of lighting and applications, the lower the electric demand. In addition, the type of climate and thermal characteristics of the materials that conform to the building envelope have significant effects on the energetic performance. The adjustment of different energetic measures and its comparison with other climatic zones enable decision-makers to choose the best combination of variables for developing strategies to lower the electric demand towards energy-efficient buildings.
Collapse
|
6
|
Abstract
The sustainable reuse of the built heritage is one of the main challenges of our time. Religious heritage, in particular, requires strong survey strategies and analyses in order to achieve consistent approaches for the conservation and transmission of its value, both material and immaterial. The exploitation of the latter is underpinned by knowledge analyses, prior to the conservation actions, with a focus not only on the techniques of material restoration but also on the values that it represents for the territory and local communities. With this aim, three case studies in Southern Italy are here presented, that offer a good example of how ecclesiastical heritage, although vast and diffuse, is still an undervalued asset. By combining accurate knowledge and historical research in comparison with the residual performance of the buildings, the results aim to demonstrate how integrated knowledge strategies can pursue more conscious choices of new possible uses for abandoned religious heritage, resulting in preserve their memory and add value in terms of social sustainability.
Collapse
|
7
|
Photovoltaic BIPV Systems and Architectural Heritage: New Balance between Conservation and Transformation. An Assessment Method for Heritage Values Compatibility and Energy Benefits of Interventions. SUSTAINABILITY 2021. [DOI: 10.3390/su13095107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper proposes to identify an approach methodology for the incorporation of building-integrated photovoltaic systems (BIPV) in existing architectural heritage, considering regulatory, conservation and energy aspects. The main objective is to provide information about guidance criteria related to the integration of BIPV in historical buildings and about intervention methods. That will be followed by the development of useful data to reorient and update the guidelines and guidance documents, both for the design approach and for the evaluation of potential future interventions. The research methodology includes a categorization and analysis of European and Swiss case studies, taking into account the state of preservation of the building before the intervention, the data of the applied photovoltaic technology and the aesthetic and energy contribution of the intervention. The result, in the form of graphic schedules, provides complete information for a real evaluation of the analyzed case studies and of the BIPV technological system used in historical contexts. This research promotes a conscious BIPV as a real opportunity to use technology and a contemporary architectural language capable of dialoguing with pre-existing buildings to significantly improve energy efficiency and determine a new value system for the historical building and its environment.
Collapse
|
8
|
An Innovative Solar-Biomass Energy System to Increase the Share of Renewables in Office Buildings. ENERGIES 2021. [DOI: 10.3390/en14040914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Increasing the energy efficiency of residential and non-residential buildings is a crucial point towards the development of the sustainable cities of the future. To reach such a goal, the commonly employed intervention measures (for instance, on facades and glass) are not sufficient and efforts in reaching a fully renewable energy generation are mandatory. In this context, this paper discusses the applicability of a system with solar and biomass as the main energy sources in different climates for heating, cooling, domestic hot water and electricity generation in office buildings. The energy system includes solar thermal collectors with thermoelectric generators, a biomass boiler, a reversible heat pump/organic Rankine cycle and an adsorption chiller. The results showed that the system can operate with a share of renewables higher than 70% for all energy needs, with up to 80% of the overall energy demand supplied only by solar and biomass sources even in the northern locations.
Collapse
|
9
|
Design Optimisation Strategies for Solid Rammed Earth Walls in Mediterranean Climates. ENERGIES 2021. [DOI: 10.3390/en14020325] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The renewed attention paid to raw earth construction in recent decades is linked to its undoubted sustainability, cost-effectiveness, and low embodied energy. In Italy, the use of raw earth as a construction material is limited by the lack of a technical reference standard and is penalised by the current energy legislation for its massive behaviour. Research experiences, especially transoceanic, on highly performative contemporary buildings made with natural materials show that raw earth can be used, together with different types of reinforcements, to create safe, earthquake-resistant, and thermally efficient buildings. On the basis of experimental data of an innovative fibre-reinforced rammed earth material, energy analyses are developed on a rammed earth building designed for a Mediterranean climate. The paper focuses on the influences that different design solutions, inspired by traditional bioclimatic strategies, and various optimised wall constructions have in the improvement of the energy performance of the abovementioned building. These considerations are furthermore compared with different design criteria aiming at minimising embodied carbon in base material choice, costs, and discomfort hours. Results have shown the effectiveness of using the combination of massive rammed earth walls, night cross ventilation, and overhangs for the reduction of energy demand for space cooling and the improvement of wellbeing. Finally, the parametric analysis of thermal insulation has highlighted the economic, environmental, and thermophysical optimal solutions for the rammed earth envelope.
Collapse
|
10
|
Building performance simulation tools as part of architectural design: breaking the gap through software simulation. INTERNATIONAL JOURNAL OF TECHNOLOGY AND DESIGN EDUCATION 2021. [DOI: 10.1007/s10798-020-09641-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
Development and Validation of a Roadmap to Assist the Performance-Based Early-Stage Design Process of Adaptive Opaque Facades. SUSTAINABILITY 2020. [DOI: 10.3390/su122310118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adaptive Opaque Facades (AOF) is an innovative concept with potential to achieve low carbon energy buildings. However, so far AOF are not integrated in the construction industry. One remarkable issue that designers have when dealing with alternative low-carbon technologies, such as AOF, is the absence of previous built experiences and the lack of specialised technical knowledge. Design roadmaps can be convenient solutions to guide pioneer low carbon technology applications. This work presents a roadmap to assist the performance-based early-stage design process of Adaptive Opaque Facades. Previous research developed new approaches and tools to assist on the construction definition of AOF, so that their adaptive thermal performance was considered when specific design decisions needed to be made. The roadmap presented in this paper organises the implementation sequence of each methodological approach and tools in different design stages, which aims to provide a holistic design approach for AOF. The usability of the roadmap was validated in a workshop called “Performance-based Design and Assessment of Adaptive Facades” with master students representing the target group of this roadmap. Even though these students had never heard about AOF before, they could successfully design, define the early-stage characteristics of an AOF and quantify the thermal performance of their AOF designs. The roadmap was proven to be a useful support, which might make the implementation of AOF more approachable in the future.
Collapse
|
12
|
Life-Cycle Assessment of Alternative Envelope Construction for a New House in South-Western Europe: Embodied and Operational Magnitude. ENERGIES 2020. [DOI: 10.3390/en13164145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The building envelope is critical to reducing operational energy in residential buildings. Under moderate climates, as in South-Western Europe (Portugal), thermal operational energy may be substantially reduced with an adequate building envelope selection at the design stage; therefore, it is crucial to assess the trade-offs between operational and embodied impacts. In this work, the environmental influence of building envelope construction with varying thermal performance were assessed for a South-Western European house under two operational patterns using life-cycle assessment (LCA) methodology. Five insulation thickness levels (0–12 cm), four total ventilation levels (0.3–1.2 ac/h), three exterior wall alternatives (double brick, concrete, and wood walls), and six insulation materials were studied. Insulation thickness tipping-points were identified for alternative operational patterns and wall envelopes, considering six environmental impact categories. Life-cycle results show that, under a South-Western European climate, the embodied impacts represent twice the operational impact of a new Portuguese house. Insulation played an important role. However, increasing it beyond the tipping-point is counterproductive. Lowering ventilation levels and adopting wood walls reduced the house life-cycle impacts. Cork was the insulation material with the lowest impact. Thus, under a moderate climate, priority should be given to using LCA to select envelope solutions.
Collapse
|
13
|
Optimization of Design Parameters for Office Buildings with Climatic Adaptability Based on Energy Demand and Thermal Comfort. SUSTAINABILITY 2020. [DOI: 10.3390/su12093540] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
According to a Chinese building energy demand report of 2016, building consumption is accelerating at a spectacular rate, especially for urban public buildings. In this study, various design parameters that meet the principle of climate adaptation are proposed to achieve the unity of energy utilization and indoor thermal comfort level. According to the local energy conservation codes, five typical benchmark geometric models were established in Open Studio (Sketch-Up plug-in) for sites representative of various climates, meanwhile, adopting the engine of Energy Plus (EP-Launch) to calculate the instrument definition file (IDF), respectively, for assessing the coupling relationship between energy consumption as well as thermal comfort. Results implied that based on the time proportion (8760 h) that met the level 1 comfort range, total energy reductions of different Chinese climate regions were different. Among them, the severe cold zone (SCZ—Changchun) and hot summer and cold winter zone (HSCW—Shanghai) appeared to have the greatest energy saving potential with 18–24% and 16–19%, respectively, while the cold zone (CZ—Beijing) and mild zone (MZ—Kunming) approximately equaled 15% and 12–15%, and the saving space of the hot summer and warm winter zone (HSWW—Haikou) appeared relatively low, only around 5–7%. Although the simulation results may be limited by the number of parameter settings, the main ones are under consideration seriously, which is further indication that there is still much room for appropriate improvements in the local public building energy efficiency codes.
Collapse
|
14
|
Life-Cycle Assessment and Monetary Measurements for the Carbon Footprint Reduction of Public Buildings. SUSTAINABILITY 2020. [DOI: 10.3390/su12083460] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Energy consumption in public buildings increased drastically over the last decade. Significant policy actions towards the promotion of energy efficiency in the building sector have been developed involving sustainable low-CO2-emission technologies. This paper presents the results of an economic–environmental valuation of a standard energy retrofit project for a public building in a Mediterranean area, integrating a life-cycle assessment (LCA) into the traditional economic–financial evaluation pattern. The study results show that simple retrofit of sustainable low-CO2-emission strategies such as wooden double-glazed windows, organic external wall insulation systems, and green roofs can reduce energy needs for heating and cooling by 58.5% and 33.4%, respectively. Furthermore, the implementation of an LCA highlights that the use of sustainable materials reduces the building’s carbon footprint index by 54.1% after retrofit compared to standard materials, thus providing an additional increase in the socio-environmental–economic–financial results of 18%. Some proposals are made about the accounting of the replacement costs and the residual value as requested in the logic of life-cycle cost (that is the economic extension of the LCA), namely concerning the method to take into account the replacement costs and the residual value. The economic calculation highlights the fundamental role played by tax benefits supporting the building energy retrofit, also in temperate climate zones, thus allowing the creation of environmental benefits in addition to remarkable cost savings.
Collapse
|
15
|
Fernandez-Antolin MM, del Río JM, Gonzalez-Lezcano RA. The use of gamification in higher technical education: perception of university students on innovative teaching materials. INTERNATIONAL JOURNAL OF TECHNOLOGY AND DESIGN EDUCATION 2020. [DOI: 10.1007/s10798-020-09583-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
16
|
The Relationship between the Use of Building Performance Simulation Tools by Recent Graduate Architects and the Deficiencies in Architectural Education. ENERGIES 2020. [DOI: 10.3390/en13051134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This paper examines the actual knowledge regarding Building Performance Simulation Tools (BPSTs) of recent graduate architects in Spain. BPSTs quantify aspects of building performance that are relevant to design, construction, and operation. Recent graduate architects are those who have been awarded a first degree from a university or college and face their first professional experience. This article aims to identify the deficiencies within the current curricula of Spanish universities relating to BPSTs. The authors have surveyed 171 recent graduate architects, and the analysis of the data reveals the deficiencies in university education. Regarding the collected results, the Spanish university syllabi must undergo necessary modifications to encourage the use of simulation as a part of university training courses. The incorporation of energy simulation in such training courses can provide recent graduate architects with tools that would assist them during the design stage. The use of these tools is key in the development of innovative pedagogy-based teaching materials for the courses. In this sense, the present work aims to delve into the usage deficiencies associated with BPSTs and propose ways in which to bridge the gap between higher education and first professional experiences.
Collapse
|
17
|
The Sedentary Process and the Evolution of Energy Consumption in Eight Native American Dwellings: Analyzing Sustainability in Traditional Architecture. SUSTAINABILITY 2020. [DOI: 10.3390/su12051810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
According to the research developed by André Leroi-Gourhan in 1964, entitled “Gesture and speech”, the evolution of human beings during Prehistory was linked to the search for work efficiency. As time passed, man designed increasingly complex tools whose production implied a decreasing amount of energy. The aim of the present research was to determine if this evolution, which occurred in parallel to the sedentary process, also affected architecture, specifically if it can be detected on traditional dwellings, particularly in those built by the Native American Indians during the pre-Columbian period. Due to their great diversity, since both nomad and sedentary models can be found among them, and to the available information about their morphology and technical characteristics, these models offer a unique opportunity to study the consequences of this process for architecture. In order to achieve it, an alternative parameter that can be determined for any type of building was designed. It allows us to establish the amount of energy an envelope is equal to. The results obtained suggest that the efficiency of the dwellings decreased as this process went forward, but this pattern changed in its last step, when agriculture appeared and permanent settlements started to be built. Besides, statistical graphs were used in order to show graphically the relationship between it, the climate, the morphology of the dwellings and their technical characteristics.
Collapse
|
18
|
Influence of Solar Reflectance and Renewable Energies on Residential Heating and Cooling Demand in Sustainable Architecture: A Case Study in Different Climate Zones in Spain Considering Their Urban Contexts. SUSTAINABILITY 2019. [DOI: 10.3390/su11236782] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this research work, energy simulation was used as a forecasting tool in architectural design. It includes the study of a multi-family residential building in five different climate zones of Spain, i.e., A4 (very hot climate zones), B4 (hot climate zones), C4 (moderate climate zones), D3 (cold climate zones), and E1 (very cold climate zones). The authors accomplished a sensitivity analysis in order to identify the influence of passive strategies (i.e., with regard to solar reflectance) and renewable energy (i.e., with regard to aerothermal energy) on indoor temperatures and energy demands. The increment in indoor temperatures depends on the neighboring buildings so that effect of urban contexts as a source of protection against sunlight is also considered. The increment in the albedo (i.e., the solar reflectance) of the façade during the winter period produces little differences in indoor operative temperatures. On the contrary, during the summer period, it produces large temperature differences. Therefore, it is shown that colors significantly reduce temperatures from 1.24 to 3.04 °C, which means considerable annual energy savings. This research demonstrates that solar reflectance can reduce the air indoor operative temperature down to 4.16 °C during the month of May in the coldest climate zones. As a result of the simulations, it is noted that the coldest climate zones are influenced to a greater extent by the inclusion of their urban contexts in the simulations. However, the heating demand, without considering it, becomes lower. Therefore, ignoring the urban context produces important errors in the heating analysis (12.2% in the coldest climate zones) and also in the cooling analysis (39% in the hottest climate zones). Finally, the use of renewable energy in the configuration of a model with a high urban canyon (Hc), as well as with an east–west building orientation and a low albedo produces a difference of around 76% in the cooling costs within the hottest climate zones and around 73% in the heating costs within the coldest climate zones. The results of this study can be applied as a guideline in early architectural design.
Collapse
|