1
|
Huda MN, Harun-Ur-Rashid M, Hosen A, Akter M, Islam MM, Emon SZ, Rahman A, Jashim ZB, Shahrukh S, Ismail M. A potential toxicological risk assessment of heavy metals and pesticides in irrigated rice cultivars near industrial areas of Dhaka, Bangladesh. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:794. [PMID: 39112821 DOI: 10.1007/s10661-024-12927-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/23/2024] [Indexed: 09/14/2024]
Abstract
Rice intake represents a significant pathway through which humans accumulate heavy metals. This study presents a comprehensive analysis of heavy metal and pesticide contamination in rice cultivars irrigated with industrial wastewater near Dhaka, Bangladesh, a region heavily influenced by industrial activities. This study employed a unique methodology that not only quantified the concentrations of heavy metals and pesticide residues in rice grains but also extended to evaluating the physicochemical properties of rice stems, husks, soil, and irrigation water. The findings revealed alarmingly high levels of heavy metals such as lead, cadmium, chromium, nickel, and mercury in the soil and irrigation water, with concentrations in some cases exceeding the World Health Organization safety thresholds by 2 to 15 times. Notably, the rice grains also exhibited significant contamination, including substantial amounts of diazinon and fenitrothion pesticides, exceeding the established safety limits. The study employed hazard quotients (HQs) and cancer risk (CR) assessments to evaluate the potential health risks associated with the consumption of contaminated rice. The results indicated HQ values were greater than 1 for rice grains across the sampled fields, suggesting a considerable non-carcinogenic health risk, particularly from lead exposure, which was found at levels twice the standard limit in all the sampling fields. Moreover, the CR values for As, Pb, Cd, Co, and Mn highlighted a significant carcinogenic risk in several instances.
Collapse
Affiliation(s)
- Muhammad Nurul Huda
- Centre for Advanced Research in Sciences, University of Dhaka, Dhaka-1000, Bangladesh
| | - Mohammad Harun-Ur-Rashid
- Department of Chemistry, International University of Business Agriculture and Technology (IUBAT), Sector 10, Uttara Model Town, Dhaka-1230, Bangladesh
| | - Anowar Hosen
- Centre for Advanced Research in Sciences, University of Dhaka, Dhaka-1000, Bangladesh
| | - Mahafuga Akter
- Clean Energy and Carbon Capture Laboratory, Department of Applied Chemistry & Chemical Engineering, University of Dhaka, Dhaka-1000, Bangladesh
| | - Md Mominul Islam
- Department of Chemistry, University of Dhaka, Dhaka-1000, Bangladesh
| | - Sharmin Zaman Emon
- Centre for Advanced Research in Sciences, University of Dhaka, Dhaka-1000, Bangladesh
| | - Asma Rahman
- Centre for Advanced Research in Sciences, University of Dhaka, Dhaka-1000, Bangladesh
| | - Zuairia Binte Jashim
- Department of Soil, Water and Environment, University of Dhaka, Dhaka-1000, Bangladesh
| | - Saif Shahrukh
- Department of Soil, Water and Environment, University of Dhaka, Dhaka-1000, Bangladesh
| | - Mohammad Ismail
- Clean Energy and Carbon Capture Laboratory, Department of Applied Chemistry & Chemical Engineering, University of Dhaka, Dhaka-1000, Bangladesh.
| |
Collapse
|
2
|
Vásquez E, Millones C. Isolation and Identification of Bacteria of Genus Bacillus from Composting Urban Solid Waste and Palm Forest in Northern Peru. Microorganisms 2023; 11:microorganisms11030751. [PMID: 36985324 PMCID: PMC10055787 DOI: 10.3390/microorganisms11030751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/26/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
A technical challenge for composting in Peruvian cities with annual temperatures below 20 °C is that the degradation of municipal solid waste (MSW) is slow, so the identification of cold-adapted bacteria would be interesting for use as inoculants in places with these climatic conditions. This study isolated, identified, and evaluated bacterial strains with cellulolytic and amylolytic activities at low temperatures. Bacterial strains were isolated from the Chachapoyas Municipal Composting Plant and soil from the Ocol Palm Forest in northern Peru. The screening was carried out to evaluate the extracellular enzyme activity of the strains at low temperatures, grouping those with cellulolytic and cellulolytic/amylolytic activities. The DNA-barcoding using 16S rRNA and enzyme activity allowed the identification and selection of five species with enzymatic activity at 15 and 20 °C of the genus Bacillus, three with cellulolytic/amylolytic activity (B. wiedmanii, B. subtilis, and B. velezensis), and two with cellulolytic activity (B. safensis subsp. safensis, and B. subtilis). These strains showed tolerance to temperatures below optimum and could be used in further studies as inoculants for composting organic wastes at temperatures below 20 °C.
Collapse
|
3
|
Zhao B, Cao X, Cai Z, Zhang L, Li D, Zhang H, Li S, Sun X. Improving suppressive activity of compost on phytopathogenic microbes by inoculation of antagonistic microorganisms for secondary fermentation. BIORESOURCE TECHNOLOGY 2023; 367:128288. [PMID: 36370939 DOI: 10.1016/j.biortech.2022.128288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Antimicrobial activity contributes to plant disease control property of composts but its source is still not clear. From composting cow manure during secondary fermentation, 50 microbial strains with antifungal activity were isolated and identified. Two bacterial strains Bacillus mojavensis B282 and Pseudomonas aeruginosa F288, antagonistic against both phytopathogenic fungi and bacteria, were respectively used as the inoculum of compost for secondary fermentation. Inoculation of B282 or F288 significantly shifted microbial community structure of compost and genera functionally linked to antagonistic activity and plant growth promotion were enriched. Notably, culturable cells of B282 increased by about 40 times during secondary fermentation. The inoculation of each strain significantly increased antifungal activity of compost extracts and enhanced disease suppressive effects of compost on wheat root rot. This study demonstrates that inoculation of compost-indigenous microorganisms could improve antimicrobial activity of compost and provides a low-cost strategy for producing bio-organic fertilizers with biocontrol function.
Collapse
Affiliation(s)
- Binhan Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianhe Cao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanjun Cai
- Inner Mongolia Mengran Biotechnology Co., Ltd, Erdos 017299, China
| | - Long Zhang
- Shandong Jinniu Group Co., Ltd, Ji'nan 250001, China
| | - Dajun Li
- Gansu Yiquan Xinhe Agricultural Science & Technology Development Co., Ltd, Jinchang 737100, China
| | - Haoyue Zhang
- Inner Mongolia Zhongke Ti-link Technology Co., Ltd, Erdos 017004, China
| | - Shaojie Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianyun Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Kiruba N JM, Saeid A. An Insight into Microbial Inoculants for Bioconversion of Waste Biomass into Sustainable "Bio-Organic" Fertilizers: A Bibliometric Analysis and Systematic Literature Review. Int J Mol Sci 2022; 23:13049. [PMID: 36361844 PMCID: PMC9656562 DOI: 10.3390/ijms232113049] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 12/31/2023] Open
Abstract
The plant-microbe holobiont has garnered considerable attention in recent years, highlighting its importance as an ecological unit. Similarly, manipulation of the microbial entities involved in the rhizospheric microbiome for sustainable agriculture has also been in the limelight, generating several commercial bioformulations to enhance crop yield and pest resistance. These bioformulations were termed biofertilizers, with the consistent existence and evolution of different types. However, an emerging area of interest has recently focused on the application of these microorganisms for waste valorization and the production of "bio-organic" fertilizers as a result. In this study, we performed a bibliometric analysis and systematic review of the literature retrieved from Scopus and Web of Science to determine the type of microbial inoculants used for the bioconversion of waste into "bio-organic" fertilizers. The Bacillus, Acidothiobacillus species, cyanobacterial biomass species, Aspergillus sp. and Trichoderma sp. were identified to be consistently used for the recovery of nutrients and bioconversion of wastes used for the promotion of plant growth. Cyanobacterial strains were used predominantly for wastewater treatment, while Bacillus, Acidothiobacillus, and Aspergillus were used on a wide variety of wastes such as sawdust, agricultural waste, poultry bone meal, crustacean shell waste, food waste, and wastewater treatment plant (WWTP) sewage sludge ash. Several bioconversion strategies were observed such as submerged fermentation, solid-state fermentation, aerobic composting, granulation with microbiological activation, and biodegradation. Diverse groups of microorganisms (bacteria and fungi) with different enzymatic functionalities such as chitinolysis, lignocellulolytic, and proteolysis, in addition to their plant growth promoting properties being explored as a consortium for application as an inoculum waste bioconversion to fertilizers. Combining the efficiency of such functional and compatible microbial species for efficient bioconversion as well as higher plant growth and crop yield is an enticing opportunity for "bio-organic" fertilizer research.
Collapse
Affiliation(s)
- Jennifer Michellin Kiruba N
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wroclaw University Science and Technology, 50-373 Wroclaw, Poland
| | - Agnieszka Saeid
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wroclaw University Science and Technology, 50-373 Wroclaw, Poland
| |
Collapse
|
5
|
Anti-Biofilm Activity and Biocontrol Potential of Streptomyces Cultures Against Ralstonia solanacearum on Tomato Plants. Indian J Microbiol 2022; 62:32-39. [PMID: 35068601 PMCID: PMC8758874 DOI: 10.1007/s12088-021-00963-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/20/2021] [Indexed: 10/20/2022] Open
Abstract
Biological control of phytopathogen is a promising approach when compared to the use of chemical agents. In the present study, seven Streptomyces cultures showing promising anti biofilm activity against Ralstonia solanacearum was mixed individually with farmyard manure. All the Streptomyces fortified farmyard manure (SFYM) were screened for plant growth promotion and control of bacterial wilt caused by R. solanacearum on tomato. Further, the ability of SFYM on stimulating the production of defense-related enzymes in R. solanacearum-inoculated tomato plants was investigated. When compared to the control tomato plants, the SFYM-treated plants had longer shoot and root length along with higher fresh and dry weight. The maximum level of chlorophyll was observed in the plants treated with strain UP1A-1 (2.21 ± 0.18 mg g-1). Strain UP1A-1 also showed maximum of 96.8 ± 1.4% biocontrol efficacy in tomato plants challenged with R. solanacearum. In addition, the UP1A-1 treated tomato plants showed maximum accumulation of total phenolics (3.02 ± 0.09 mg g-1) after 6 days of pathogen inoculation (DPI). Similarly, tomato plants treated with UP1A-1 showed highest level of peroxides, polyphenol oxidase and phenylalanine ammonia lyase during 1-9 DPI. Findings of present study revealed that the Streptomyces culture UP1A-1 fortified farm yard manure could be applied as an eco-friendly alternative to synthetic agents for controlling bacterial wilt in tomato plants.
Collapse
|
6
|
Ashraf I, Ahmad F, Sharif A, Altaf AR, Teng H. Heavy metals assessment in water, soil, vegetables and their associated health risks via consumption of vegetables, District Kasur, Pakistan. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04547-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
AbstractThe consumption of contaminated vegetables has a great impact on human health. Due to this fact, we conduct the study to estimate the heavy metals in groundwater, soil, and vegetables by using the atomic adsorption spectroscopy (AAS) and find out the health risk using THQ and TCR caused by using these vegetables. The mean concentrations of As (0.015–0.40 mg/L), Cd (0.02–0.029 mg/L), Co (0.31–0.38 mg/L), Cr (1.02–1.09 mg/L), Cu (2.14–2.17 mg/L), and Hg (0.01–0.04 mg/L) are high in groundwater from threshold values given by WHO. The mean concentrations of As (22.17–23.14 mg/kg), Cd (4.21–4.54 mg/kg), Cu (21.24–24.36 mg/kg), and Pb (32.12–33.48 mg/kg) are high in soil samples from threshold values given by WHO. The mean concentrations of As, Cd, Pb, Cr, Fe, Hg, and Mn values exceeded the recommended values with concentration ranges: 1.75–4.56, 0.41–0.67, 2.12–3.12, 1.44–4.56, 87.12–135.25, 2.09–2.64, and 33.41–129.32 mg/Kg, respectively. The vegetable sample’s average concentration of heavy metals was in decreasing order cabbage ˃ brinjal ˃ okra ˃ tomato. The EDI values for As, Co, and Hg calculated for both adults and children is high. The target hazard quotients (THQ) for As, Co, and Hg are greater than the threshold value by consuming vegetables, which indicated the health risk for both adults and children. Similarly, HI due to tomato, cabbage, okra, and brinjal’s consumption is ˃ 1, with HI values 8.1975, 15.3077, 8.7312, and 10.2306, respectively. This advised the possible health effect in this area by using these vegetables. Target Cancer risk (TCR) exposed the adverse cancer risk persuaded by As, Cr, and Hg as their values exceeded the normal range by USEPA by consumption of these vegetables. This study concluded that vegetables imply the total health risk on local people, and regular monitoring of heavy metals is strongly suggested in this region.
Collapse
|
7
|
Jain D, Ravina, Bhojiya AA, Chauhan S, Rajpurohit D, Mohanty SR. Polyphasic Characterization of Plant Growth Promoting Cellulose Degrading Bacteria Isolated from Organic Manures. Curr Microbiol 2021; 78:739-748. [PMID: 33416972 DOI: 10.1007/s00284-020-02342-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
In the present study, twenty seven cellulose-degrading bacteria (CDB) were isolated from various organic manures and their cellulolytic activities were determined. The bacterial isolate CDB-26 showed the highest cellulolytic index, released 0.507 ± 0.025 mg/ml glucose and produced 0.196 ± 0.014 IU/ml cellulase enzyme under in vitro conditions. Biochemically, all the 27 isolates showed difference in the 6 biochemical tests performed. Further, all the 27 CDB isolates were subjected to various plant growth-promoting activities, and all CDB strains were positive for IAA production, GA3 production and siderophore production, whereas 19 strains were positive for ACC deaminase activity, 21 strains showed NH3 production and 19 strains were positive for HCN production. Out of 27 CDB isolates, 18 isolates were able to solubilize phosphate, 21 isolates were able to solubilize potash and 10 CDB isolates were found positive for silica solubilization. The molecular diversity among different CDB isolates was studied through ARDRA and demonstrated very high genetic diversity among these bacteria. The in vitro cellulose-degradation potential of these CDB isolates using vegetable waste as substrate were also assessed, and the 3 CDB isolates viz. Serratia surfactantfaciens (CDB-26), Stenotrophomonas rhizophila (CDB-16) and Pseudomonas fragi (CDB-5) showed the highest cellulose-degrading potential under in vitro conditions. Hence, the cellulolytic microbes isolated in the present study could be used for effective bioconversion of plant biomasses into enriched compost.
Collapse
Affiliation(s)
- Devendra Jain
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, 313001, India.
| | - Ravina
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, 313001, India
| | - Ali Asger Bhojiya
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, 313001, India.,Department of Agriculture and Veterinary Sciences, Mewar University, Chittaurgarh, Rajasthan, India
| | - Surya Chauhan
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, 313001, India
| | - Deepak Rajpurohit
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, 313001, India
| | - Santosh R Mohanty
- Indian Institute of Soil Science, Indian Council of Agricultural Research, Bhopal, Madhya Pradesh, 462038, India
| |
Collapse
|
8
|
Compost Inoculated with Fungi from a Mangrove Habitat Improved the Growth and Disease Defense of Vegetable Plants. SUSTAINABILITY 2020. [DOI: 10.3390/su13010124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Municipal organic wastes could be exploited as fertilizers, having been given the ability to suppress plant diseases by the inoculation of the waste with certain fungi in the composting process. Our aim was to develop a novel fertilizer using composting in combination with fungi associated with mangrove forests. Nine fungal species were isolated from a mangrove forest habitat and screened for their activity against five phytopathogenic fungi, their plant-growth promotion ability, and their phosphate solubilization ability. Two fungal isolates, Penicillium vinaceum and Eupenicillium hirayama, were inoculated into organic waste before the composting experiment. After 90 days, the physico-chemical properties of the compost (color, moisture, pH, C:N ratio and cation exchange capacity (CEC)) indicated the maturity of the compost. The C:N ratio decreased and the CEC value increased most in the compost with the inoculum of both mangrove fungi. The vegetable plants grown in the mangrove fungi-inoculated composts had a higher vigor index than those grown in the control compost. The seeds collected from the plants grown in the fungi-inoculated composts had higher disease defense ability than the seeds collected from the control compost. The results indicated that the properties of the fungi shown in vitro (antagonistic and plant-growth promotion) remained in the mature compost. The seeds of the plants acquired disease defense ability, which is a remarkable observation that is useful in sustainable agriculture.
Collapse
|
9
|
Co-Fermentation of Food Waste and Municipal Sludge from the Saudi Arabian Environment to Improve Lactic Acid Production by Lactobacillus rhamnosus AW3 Isolated from Date Processing Waste. SUSTAINABILITY 2020. [DOI: 10.3390/su12176899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Food waste and municipal sludge were used as the substrates for the biosynthesis of lactic acid in a batch fermentor. The probiotic bacterial strain Lactobacillus rhamnosus AW3 isolated from date processing waste was used to produce lactic acid in a batch fermentor. Co-fermentation enhanced the biosynthesis of lactic acid and decreased substrate inhibition more than mono-substrate fermentation. A maximum yield of 28.4 ± 0.87 g/L of lactic acid was obtained through co-fermentation of food waste and municipal sludge at an optimized ratio of 2:0.5. Lactic acid production was improved by the supplementation of fructose, peptone, and sodium dihydrogen phosphate at pH 5.5 after 48 h fermentation. This production was approximately three-fold higher than that during mono-fermentation of food waste. The tested bacterial strains were obtained from the Microbial Type Culture Collection (MTCC). Lactic acid showed potent antimicrobial activity against pathogenic organisms, such as Bacillus subtilis MTCC 5981 (14 mm), Staphylococcus aureus MTCC 737 (20 mm), Pseudomonas aeruginosa MTCC 424 (24 mm), Enterobacter aerogenes MTCC111 (19 mm), Escherichia coli MTCC 443 (18 mm), Penicillium chrysogenum MTCC 5108 (19 mm), and Aspergillus niger MTCC 282 (19 mm). The antimicrobial properties of lactic acid have significant potential to inhibit the growth of pathogenic bacteria and fungi and improve probiotic properties. The lactic acid extracted from L. rhamnosus AW3 decreased the pH value of soil (p < 0.01) and increased the availability of soil phosphorus (p < 0.01). These findings demonstrate the bioconversion of food waste and municipal sludge into lactic acid, and the recycling of food wastes in urban areas to enhance soil nutrients.
Collapse
|