1
|
Wang L, Wang Y, Sun D, Wang J, Lee SJ, Viscarra Rossel RA, Gan Y. Soil carbon stocks in temperate grasslands reach equilibrium with grazing duration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175081. [PMID: 39069182 DOI: 10.1016/j.scitotenv.2024.175081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/13/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Lost soil organic carbon (SOC) in degraded grasslands can be restored via the 'grazing exclusion' practice, but it was unknown how long (# of years) the restoration process can take. A synthesis of four decades of studies revealed that grazing exclusion increased SOC stocks in the topsoil (0-0.30 m) by 14.8 % (±0.8 Std Err), on average, compared to moderate-to-heavy grazing (MtH); During which SOC stock increased steadily, peaked in Year 18.5, and then declined. At peak, SOC stock was 42.5 % greater under grazing exclusion than under MtH due to 100.4 ± 4.2 % increase in aboveground biomass and 80.3 ± 33.5 % increase in root biomass. Grazing exclusion also increased soil C:N ratio by 7.6 % while decreasing bulk density by 9.4 %. Grazing exclusion could be ceased 18.5 years after initiation of grazing exclusion as plant biomass input balances carbon decomposition and SOC equilibrium occurs then additional benefits start diminishing.
Collapse
Affiliation(s)
- Li Wang
- College of Life and Environmental Science, State & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Zhejiang Provincial Collaborative Innovation Center for Tideland Reclamation and Ecological Protection, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Yijia Wang
- College of Life and Environmental Science, State & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Zhejiang Provincial Collaborative Innovation Center for Tideland Reclamation and Ecological Protection, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Dandi Sun
- College of Life and Environmental Science, State & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Zhejiang Provincial Collaborative Innovation Center for Tideland Reclamation and Ecological Protection, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Junying Wang
- College of Life and Environmental Science, State & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Zhejiang Provincial Collaborative Innovation Center for Tideland Reclamation and Ecological Protection, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Soon-Jae Lee
- Department of Ecology and Evolution, University of Lausanne, Lausanne CH1015, Switzerland
| | | | - Yantai Gan
- College of Life and Environmental Science, State & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Zhejiang Provincial Collaborative Innovation Center for Tideland Reclamation and Ecological Protection, Wenzhou University, Wenzhou, Zhejiang 325035, China; Agroecosystems, The UBC-Soil Group, Tallus Heights, Kelowna, BC V4T 3M2, Canada.
| |
Collapse
|
2
|
Roy S, Naidu DGT, Bagchi S. Functional substitutability of native herbivores by livestock for soil carbon stock is mediated by microbial decomposers. GLOBAL CHANGE BIOLOGY 2023; 29:2141-2155. [PMID: 36732877 DOI: 10.1111/gcb.16600] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 05/28/2023]
Abstract
Grazing by large mammalian herbivores impacts climate as it can favor the size and stability of a large carbon (C) pool in the soils of grazing ecosystems. As native herbivores in the world's grasslands, steppes, and savannas are progressively being displaced by livestock, it is important to ask whether livestock can emulate the functional roles of their native counterparts. While livestock and native herbivores can have remarkable similarity in their traits, they can differ greatly in their impacts on vegetation composition which can affect soil-C. It is uncertain how these similarities and differences impact soil-C via their influence on microbial decomposers. We test competing alternative hypotheses with a replicated, long-term, landscape-level, grazing-exclusion experiment to ask whether livestock in the Trans-Himalayan ecosystem of northern India can match decadal-scale (2005-2016) soil-C stocks under native herbivores. We evaluate multiple lines of evidence from 17 variables that influence soil-C (quantity and quality of C-input from plants, microbial biomass and metabolism, microbial community composition, eDNA, veterinary antibiotics in soil), and assess their inter-relationships. Livestock and native herbivores differed in their effects on several soil microbial processes. Microbial carbon use efficiency (CUE) was 19% lower in soils under livestock. Compared to native herbivores, areas used by livestock contained 1.5 kg C m-2 less soil-C. Structural equation models showed that alongside the effects arising from plants, livestock alter soil microbial communities which is detrimental for CUE, and ultimately also for soil-C. Supporting evidence pointed toward a link between veterinary antibiotics used on livestock, microbial communities, and soil-C. Overcoming the challenges of sequestering antibiotics to minimize their potential impacts on climate, alongside microbial rewilding under livestock, may reconcile the conflicting demands from food-security and ecosystem services. Conservation of native herbivores and alternative management of livestock is crucial for soil-C stewardship to envision and achieve natural climate solutions.
Collapse
Affiliation(s)
- Shamik Roy
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India
| | - Dilip G T Naidu
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India
- Divecha Centre for Climate Change, Indian Institute of Science, Bangalore, India
| | - Sumanta Bagchi
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India
- Divecha Centre for Climate Change, Indian Institute of Science, Bangalore, India
| |
Collapse
|
3
|
Yakob G, Smith JU, Nayak DR, Hallett PD, Phimister E, Mekuria W. Changes in Soil Properties Following the Establishment of Exclosures in Ethiopia: A Meta-Analysis. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.823026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Community-led watershed development activities, including the establishment of exclosures (areas where both livestock and farming activities are excluded) on degraded communal grazing land, have become a common practice in Ethiopia since the 1990s. However, it is not yet fully understood how these exclosures change soil organic carbon and total soil nitrogen in different soil types and under different agroecologies. A meta-analysis using data gathered from the most relevant peer reviewed articles from Ethiopian exclosure systems was conducted to assess the variation in the effects of exclosures on soil carbon and nitrogen and to investigate the factors controlling change. The results demonstrate that after 16 years, exclosures can increase soil organic carbon and total soil nitrogen up to an effect size greater than two. This is moderated by soil type, exclosure age, landscape position and agroecology. More effective restoration of soil carbon was observed in less developed Leptosols and Cambisols than in more developed Luvisols, and in drier than more humid agroecologies. The results suggest that soil type and agroecology should be taken into consideration when planning and implementing exclosures on degraded communal grazing land. The findings of this study provide base line information for the future expansion of exclosures, and guide where to focus implementation. They also provide criteria to be used when planning and establishing exclosures to restore soil carbon and nitrogen. In addition, the results generated through this meta-analysis provide better understanding of the spatial and temporal variation of the effectiveness of exclosures to restore soil carbon and nitrogen.
Collapse
|
4
|
Short-term grazing exclusions reduced soil organic carbon but not bacterial diversity in the sagebrush desert, Northwest China. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
5
|
Large Mammalian Herbivores and the Paradox of Soil Carbon in Grazing Ecosystems: Role of Microbial Decomposers and Their Enzymes. Ecosystems 2021. [DOI: 10.1007/s10021-021-00696-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|