1
|
Flood Resilience and Adaptation in the Built Environment: How Far along Are We? SUSTAINABILITY 2022. [DOI: 10.3390/su14074096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cities are experiencing an increased rate of climate-related extreme events threats derived from climate change. Floods are one of the most challenging issues to address to reduce damages and losses in urban areas. Building resilience through adaptation to these changing conditions has become a common goal for different disciplines involving planning for the future. Adaptation planning is widely recognized as generally applicable to any field. However, there are current limitations to overcome for architectural and urban planning to switch from theory to practice. This paper proposes a critical overview of literature works on flood mitigative strategies and adaptive approaches considering uncertainties, linking strategies for the Built Environment (BE) to mitigate the effects of floods, and operative frameworks to pursue adaptation under changing environmental conditions. The literature selection accounts for the pivotal components of the BE: open spaces (OSs), buildings, and users. Next, we provide an overview of the most relevant adaptive methodologies that have emerged in literature, and, lastly, the planning strategies are discussed, considering the climate-related uncertainties that might undermine the effectiveness of the designed action. The present paper aimed to provide a contribution to the discussion regarding the necessity of making architectural and urban planning adaptive, providing a base for future studies for operative adaptation.
Collapse
|
2
|
Assessing Community Resilience to Urban Flooding in Multiple Types of the Transient Population in China. WATER 2020. [DOI: 10.3390/w12102784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
While various measures of mitigation and adaptation to climate change have been taken in recent years, many have gradually reached a consensus that building community resilience is of great significance when responding to climate change, especially urban flooding. There has been a dearth of research on community resilience to urban floods, especially among transient communities, and therefore there is a need to conduct further empirical studies to improve our understanding, and to identify appropriate interventions. Thus, this work combines two existing resilience assessment frameworks to address these issues in three different types of transient community, namely an urban village, commercial housing, and apartments, all located in Wuhan, China. An analytic hierarchy process–back propagation neural network (AHP-BP) model was developed to estimate the community resilience within these three transient communities. The effects of changes in the prioritization of key resilience indicators under different environmental, economic, and social factors was analyzed across the three communities. The results demonstrate that the ranking of the indicators reflects the connection between disaster resilience and the evaluation units of diverse transient communities. These aspects show the differences in the disaster resilience of different types of transient communities. The proposed method can help decision makers in identifying the areas that are lagging behind, and those that need to be prioritized when allocating limited and/or stretched resources.
Collapse
|