1
|
Study on the Extraction Method of Sub-Network for Optimal Operation of Connected and Automated Vehicle-Based Mobility Service and Its Implication. SUSTAINABILITY 2022. [DOI: 10.3390/su14063688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
There have been enormous efforts to implement automated vehicle-based mobility (AVM) by considering smart infrastructure such as cooperative intelligent transportation system. However, there is lack of consideration on economical approach for an optimal deployment strategy of the AVM service and smart infrastructure. Furthermore, the influence of travel demand in service area has been ignored. We develop a new framework for maximizing the profit of connected and automated vehicle-based mobility (CAV-M) service using cost modeling and metaheuristic optimization algorithm. The proposed framework extracts an optimal sub-network, which is selected by a set of optimal links in the service area, and identifies an optimal construction strategy for the smart infrastructure depending on given operational design domain and travel demand. Based on service network analyses with varying demand patterns and volumes, we observe that the optimal sub-network varies with the combination of trip demand patterns and volumes. It is also found that the benefit of deploying the smart infrastructure is obtainable only when there are sufficient travel demands. Furthermore, the optimal sub-network is always superior to raw network in terms of economical profit, which suggests the proposed framework has great potential to prioritize road links in the target area for the CAV-M service.
Collapse
|
2
|
Analysis of Relationship between Road Geometry and Automated Driving Safety for Automated Vehicle-Based Mobility Service. SUSTAINABILITY 2022. [DOI: 10.3390/su14042336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Various mobility services have been proposed based on the integration of automated vehicle (AV) and road infrastructure. Service providers need to identify a set of road sections for ensuring the driving safety of an AV-based mobility service. The main objective of this research is to analyze the safety performance of AVs on the road geometrical features present during this type of mobility service. To achieve the research goal, a mobility service is classified by a combination of six road types, including expressway, bus rapid transit (BRT) lane, principal arterial road, minor arterial road, collector road, and local road. With any given road type, a field test dataset is collected and analyzed to assess the safety performance of the AV-based mobility service with respect to road geometry. Furthermore, the safety performances of each road section are explored by using a historical dataset for human-driven vehicle-involved accident cases. The result reveals that most of the dangerous occurrences in both AV and human-driven vehicles show similar patterns. However, contrasting results are also observed in crest vertical curve sections, where the AV shows a lower risk of dangerous events than that of a human-driven vehicle. The findings can be used as primary data for optimizing the physical and digital infrastructure needed to implement efficient and safe AV-based mobility services in the future.
Collapse
|