1
|
da Silva JA, Martins MDF, Guedes TDA, Collares GL, Primel EG, Corrêa MG, Martins CDMG. The use of integrative tools and multiple models for aquatic environmental quality assessment: a case study of the Mirim Lagoon, Southern Brazil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:200. [PMID: 38270819 DOI: 10.1007/s10661-024-12336-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024]
Abstract
This study performed toxicity assays with microalgae, microcrustaceans, and fish as well as evaluated biochemical and behavioral biomarkers in fish and microcrustaceans to assess the quality of the surface water of Mirim Lagoon, which belongs to one of the largest hydrographic basins in the world, located in southern Brazil. Three distinct sampling periods were chosen (January, March, and June 2022) based on the rice plantation dynamics which is the main activity surrounding the lagoon. In January, the plantation is irrigated; in March, the water is drained into the Mirim Lagoon, and July is the off-season. Concerning toxicity tests, there was significant inhibition in microalgae growth when exposed to water collected in March, but no mortality was observed for Ceriodaphia dubia, Daphnia magna, and Danio rerio. Regarding biomarkers, behavioral variables contributed more to the higher values of the Integrated Biomarker Response (IBR) index for both D. magna and D. rerio, in March. The Redundancy Analysis (RDA) indicated a correlation between the biomarkers for both organisms and abiotic parameters, mainly nutrients (total phosphorus and total nitrogen), thermotolerant coliforms, total solids, and turbidity. Spatially, there was no difference during monitoring, but the most significant ecotoxicological effects were observed in March. Multivariate analysis and the IBR index proved to be useful tools for monitoring of water bodies such as Mirim Lagoon.
Collapse
Affiliation(s)
- Josiane Araujo da Silva
- Instituto de Ciências Biológicas, Programa de Pós Graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande, Av, Itália Km 8, Rio Grande, RS, 96203-900, Brazil
| | - Mariana da Fountoura Martins
- Instituto de Ciências Biológicas, Programa de Pós Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, Av Itália Km 8, Rio Grande, RS, 96203-900, Brazil
| | - Thays de Andrade Guedes
- Instituto de Ciências Biológicas, Programa de Pós Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, Av Itália Km 8, Rio Grande, RS, 96203-900, Brazil
| | - Gilberto Loguercio Collares
- Centro de Desenvolvimento Tecnológico, Núcleo de Ensino, Pesquisa e Extensão em Hidrometria e Sedimentologia para o Manejo de Bacias Hidrográficas (NEPE-HIDROSEDI), Universidade Federal de Pelotas, Rua Gomes Carneiro 01, Pelotas, RS, 96010-610, Brazil
| | - Ednei Gilberto Primel
- Escola de Química e Alimentos, Programa de Pós Graduação em Química Tecnológica e Ambiental, Universidade Federal do Rio Grande, Av Itália Km 8, Rio Grande, RS, 96203-900, Brazil
| | - Marília Guidotti Corrêa
- Centro de Desenvolvimento Tecnológico, Núcleo de Ensino, Pesquisa e Extensão em Hidrometria e Sedimentologia para o Manejo de Bacias Hidrográficas (NEPE-HIDROSEDI), Universidade Federal de Pelotas, Rua Gomes Carneiro 01, Pelotas, RS, 96010-610, Brazil
- Escola de Química e Alimentos, Programa de Pós Graduação em Química Tecnológica e Ambiental, Universidade Federal do Rio Grande, Av Itália Km 8, Rio Grande, RS, 96203-900, Brazil
| | - Camila de Martinez Gaspar Martins
- Instituto de Ciências Biológicas, Programa de Pós Graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande, Av, Itália Km 8, Rio Grande, RS, 96203-900, Brazil.
- Instituto de Ciências Biológicas, Programa de Pós Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, Av Itália Km 8, Rio Grande, RS, 96203-900, Brazil.
| |
Collapse
|
2
|
Sustainable Development Programming of Airports by Identification of Non-Efficient Units. ENERGIES 2022. [DOI: 10.3390/en15030932] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This article concerns the identification of inefficient airports and the exploration of spatial autocorrelation for programming sustainable development. The first research question was: do domestic airports cooperate by shifting passenger service and traffic to the geographically closest airport to respect the idea of sustainable development (in view of the rationalization of energy consumption)? The second question was: do they excessively compete for passengers and the carriers serving them? The aim was to identify ineffective units (taking into account energy consumption, airplane traffic, and passenger movement) and to evaluate the spatial autocorrelation between national airports, which shows whether airports cooperate or compete with each other. The study was conducted on 12 airports. An innovative extension of the data envelopment analysis method using methods in the field of spatial econometrics (including two-dimensional Moran I statistics and local LISA statistics) and artificial intelligence was applied. It was verified that ineffective airports have a non-rationalized structure of inputs to outputs. Based on the map-graph of connections, airports have been identified to which part of airplane traffic service can be transferred. Based on Moran statistics and local LISA statistics, it was confirmed that airports compete with each other. There was a strong polarization of efficient airports.
Collapse
|