1
|
Modeling Ground Ozone Concentration Changes after Variations in Precursor Emissions and Assessing Their Benefits in the Kanto Region of Japan. ATMOSPHERE 2022. [DOI: 10.3390/atmos13081187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ozone (O3) is a pollutant of concern in urban areas because of its effects on health, crops, ecosystems, and materials. Despite efforts to meet the Japanese air quality standard for O3 in the Kanto region, the attainment percentage is close to zero. Considering that O3 formation is sensitive to emissions of volatile organic compounds (VOC) and nitrogen oxides (NOx), this study evaluated a range of reductions in the emissions of both precursors using a regional air quality model (ADMER-PRO) and estimated their benefits measured as the economic change due to O3 concentration differences between scenarios. The simulation period was set during the 2016 O3 season. The results showed that O3 concentrations could be reduced using two approaches: significant reduction in VOC levels combined with minor NOx level changes or significant NOx emission reduction. Significant reduction in NOx levels was the most effective strategy for a generalized decrease in the O3 levels in the Kanto region, and the benefit analysis revealed that the most significant economic impacts could be achieved by adopting the latter approach.
Collapse
|
2
|
Green GDP Indicator with Application to Life Cycle of Sugar Industry in Thailand. SUSTAINABILITY 2022. [DOI: 10.3390/su14020918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The objective of this study was to develop new indicators that reflect economic growth by taking into account the impact on the environment and natural resources as well. The indicator calculated by subtracting environmental cost from the “Gross Domestic Product (GDP)” and is used in the assessment of the GDP by taking into consideration the cost of natural resources and the environment, called “green GDP”. This study uses Life Cycle Assessment, which is a technique used to assess the environmental impact of sugar industry from raw materials, distribution, production, and waste management. The system boundary for the life cycle inventory are cultivation, planting, transportation and sugar production. The results of the green GDP and GDP is difference about 6–12% due to the depletion cost resulting from the use of natural resources between 9.0–9.52 $/ton of sugar production and the degradation cost caused by the airborne emission and waterborne emission between 37–57 $/ton of sugar production. The quantity of Total Suspended Particulate (TSP) generated from the sugar production process is the main causing the environmental cost about 55%. In order to solve environmental causes, the policy making as Circular Economy Strategies can be used to meet the sustainable development in the future.
Collapse
|