Roy A, Ullah H, Alzahrani M, Ghosh A, Mallick TK, Tahir AA. Synergistic Effect of Paraffin-Incorporated In
2O
3/ZnO Multifold Smart Glazing Composite for the Self-Cleaning and Energy-Saving Built Environment.
ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022;
10:6609-6621. [PMID:
35634267 PMCID:
PMC9131515 DOI:
10.1021/acssuschemeng.2c00260]
[Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/26/2022] [Indexed: 05/06/2023]
Abstract
The thermal performance of window glazing requires improvement for a sustainable built environment at an acceptable cost. The current work demonstrates a multifold smart composite consisting of an optimized In2O3/ZnO-polymethyl methacrylate-paraffin composite to reduce heat exchange through the combined self-cleaning and energy-saving envelope of the smart built environment. This work has attempted to develop a smart composite coating that combines photosensitive metal oxide and phase change materials and investigate their thermal comfort performance as a glazed window. It is observed that the In2O3/ZnO (5 wt %) multifold composite film experienced better transmittance and thermal performance compared to its other wt % composite samples. Moreover, the multifold composite-coated glass integrated into a prototype glazed window was further investigated for its thermal performance, where a steady average indoor temperature of ∼30 °C was achieved when the outside temperature reached ∼55 °C, while maintaining good visibility. Interestingly, the transparency reached ∼86% at 60 °C and exhibited a hydrophobic water contact angle (WCA) of ∼138°. In contrast, a similar film exhibits ∼64% transparency at 22 °C, where the WCA becomes moderately hydrophilic (∼68°). Temperature dependency on transparency and wettability properties was examined for up to 60 cycles, resulting in excellent indoor thermal comfort. In addition, a thermal simulation study was executed for the smart multifold glazing composite. Moreover, this study offers dynamic glazing development options for energy saving in the smart built environment.
Collapse