1
|
Economou F, Chatziparaskeva G, Papamichael I, Loizia P, Voukkali I, Navarro-Pedreño J, Klontza E, Lekkas DF, Naddeo V, Zorpas AA. The concept of food waste and food loss prevention and measuring tools. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2024; 42:651-669. [PMID: 38515069 DOI: 10.1177/0734242x241237187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Food waste (FW) has become a global concern, with an estimated 1.3 billion tonnes lost annually, costing about $1 trillion. Environmental and social consequences of FW are significant, contributing to 6% of European Unions' greenhouse gasemissions and affecting global food security. FW occurs is a complex issue occurring at various stages of the food supply chain (FSC) and is influenced by multiple factors such as infrastructure, available knowledge and socio-economic conditions. Developed countries FW is more prevalent at the consumption stage, whereas in the developing countries losses occur in agricultural production, post-harvest and distribution stage. Accurate quantification of FW across the supply chain is crucial and monitoring key performance indicators helps identify areas for improvement. The European Union mandates FW measurement, aligning with sustainable development goals, emphasizing the need for effective waste prevention measures. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses approach was utilized to conduct a systematic literature review on FW key performance indicators (KPIs) and monitoring tools. The research identified 22 KPIs, categorized into three levels of the FSC: primary, secondary and tertiary. The most common KPIs included FW per capita, FW per portion and FW percentage. The study further discusses FW prevention measures and essential monitoring tools for addressing FW throughout the supply chain.
Collapse
Affiliation(s)
- Florentios Economou
- Laboratory of Chemical Engineering and Engineering Sustainability, Faculty of Pure and Applied Sciences, Open University of Cyprus, Latsia, Nicosia, Cyprus
| | - Georia Chatziparaskeva
- Laboratory of Chemical Engineering and Engineering Sustainability, Faculty of Pure and Applied Sciences, Open University of Cyprus, Latsia, Nicosia, Cyprus
| | - Iliana Papamichael
- Laboratory of Chemical Engineering and Engineering Sustainability, Faculty of Pure and Applied Sciences, Open University of Cyprus, Latsia, Nicosia, Cyprus
| | - Pantelitsa Loizia
- Laboratory of Chemical Engineering and Engineering Sustainability, Faculty of Pure and Applied Sciences, Open University of Cyprus, Latsia, Nicosia, Cyprus
| | - Irene Voukkali
- Laboratory of Chemical Engineering and Engineering Sustainability, Faculty of Pure and Applied Sciences, Open University of Cyprus, Latsia, Nicosia, Cyprus
| | - Jose Navarro-Pedreño
- Department of Agrochemistry and Environment, University Miguel Hernández of Elche, Elche (Alicante), Spain
| | - Eleftheria Klontza
- Waste Management Laboratory, Department of the Environment, University of the Aegean, Mytilene, Greece
| | - Demetris F Lekkas
- Waste Management Laboratory, Department of the Environment, University of the Aegean, Mytilene, Greece
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division, Department of Civil Engineering, University of Salerno, Fisciano, SA, Italy
| | - Antonis A Zorpas
- Laboratory of Chemical Engineering and Engineering Sustainability, Faculty of Pure and Applied Sciences, Open University of Cyprus, Latsia, Nicosia, Cyprus
| |
Collapse
|
2
|
Bocean CG. A Longitudinal Analysis of the Impact of Digital Technologies on Sustainable Food Production and Consumption in the European Union. Foods 2024; 13:1281. [PMID: 38672953 PMCID: PMC11049518 DOI: 10.3390/foods13081281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
In today's landscape, digital technologies hold immense potential in tackling challenges associated with food sustainability. This study aims to contextualize a broader investigation of food sustainability and digitalization within the agricultural sector. Its objective is to explore the influence of digital technologies on sustainable food production and consumption, particularly examining relationships among digital technologies, municipal waste, agricultural output, nitrogen emissions, methane emissions from agriculture, and Goal 12 Responsible Consumption and Production (SDG12). Through the use of Structural Equation Modeling, the empirical investigation scrutinizes the relationships between digital technology use and critical variables linked to food sustainability in a longitudinal analysis. The results highlight the significant impact of extensive digital technology use on municipal waste, sustainable production, and consumption, indirectly influencing greenhouse gas (GHG) emissions. Empirical research findings reveal a negative influence of digital technologies on responsible consumption and production (path coefficient -0.349, p values < 0.001), suggesting an impact of digital technologies on diminishing sustainability in consumption and production. The relationship between digital technologies and municipal solid waste is also negative (path coefficient -0.360, p values < 0.001), suggesting that the use of digital technologies can contribute to reducing the amount of municipal solid waste. Digitalization has the potential to improve the sustainability of supply chains by reducing resource consumption and greenhouse gas emissions associated with production and distribution operations.
Collapse
Affiliation(s)
- Claudiu George Bocean
- Department of Management, Marketing and Business Administration, Faculty of Economics and Business Administration, University of Craiova, 13 AI Cuza Street, 200585 Craiova, Romania
| |
Collapse
|
3
|
Hong Z, Xiao K. Digital economy structuring for sustainable development: the role of blockchain and artificial intelligence in improving supply chain and reducing negative environmental impacts. Sci Rep 2024; 14:3912. [PMID: 38365912 PMCID: PMC10873311 DOI: 10.1038/s41598-024-53760-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
In the current global context of environmental degradation and resource constraints, the pursuit of sustainable development has become an imperative. One avenue that holds promise for achieving this objective is the application of digital technologies, which have the potential to decouple economic growth from its carbon footprint. However, it is crucial to ensure that these technologies are designed and governed in a prudent manner, with a strong alignment to environmental priorities. This study focuses on exploring the potential roles of blockchain and artificial intelligence (AI) in supply chain coordination and impact mitigation. Furthermore, they have the capacity to incentivize recycling and circular business models, as well as facilitate carbon accounting and offsetting. To fully realize these benefits, it is essential to deploy these technologies within inclusive collaborative frameworks that take into consideration social and ecological considerations. The study also offers policy recommendations that highlight key leverage points for digital innovation, enabling countries to embark on smart and green industrial transformation pathways. By harnessing the potential of blockchain and AI in supply chains, governments can promote transparency, traceability, and accountability, thereby fostering sustainable practices and reducing environmental impacts. Incorporating blockchain and AI technologies into supply chain approaches leads to a substantial improvement in efficiency, as demonstrated by a numerical analysis. In conclusion, the integration of innovative digital technologies offers significant opportunities to optimize production systems and economic activity while prioritizing sustainability objectives for the betterment of society and the environment. These technologies have the potential to mitigate environmental externalities by addressing information imbalances within global supply chains. However, it is essential to prioritize inclusive governance that emphasizes democratic participation to mitigate any unintended negative consequences, especially for vulnerable communities. By ensuring inclusive decision-making processes, we can maximize the positive impact of these technologies while minimizing potential harm.
Collapse
Affiliation(s)
- Zexin Hong
- School of Economics, Minzu University of China, Beijing, 100081, China.
- Beijing Financial Street Institute, Beijing, 100032, China.
| | | |
Collapse
|
4
|
Agnusdei L, Krstić M, Palmi P, Miglietta PP. Digitalization as driver to achieve circularity in the agroindustry: A SWOT-ANP-ADAM approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163441. [PMID: 37080306 DOI: 10.1016/j.scitotenv.2023.163441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
In the last decades, the agroindustry is facing environmental issues due particularly to food loss and waste, requiring a strong orientation towards sustainability and the circular economy (CE) paradigm. This study carries out an investigation of the role of digitalization in serving as a driver to achieve circularity in the agroindustry. A SWOT analysis was performed to assess the strengths and weaknesses (internal factors) and opportunities and threats (external factors) of digitalization in boosting circularity within agroindustry systems and identifying critical factors (CFs). Through the Analytical Network Process (ANP), an evaluation of these CFs was provided, while the Axial-Distance-Based Aggregated Measurement (ADAM) method allowed for the ranking of the strategic alternatives to better inform management decisions. This study provides valuable results that reveal the crucial role of digitalization in boosting circularity within agroindustry, highlighting the most impactful strategies driving the transition towards a circular economy. Linking the high sustainability performance of products to incentives and increasing consumer inclusion and awareness in business dynamics were found to be the most relevant strategies for making agro-industrial supply chains more circular. This study provides recommendations to lead managers' and practitioners' decisions towards the adoption of strategies, aimed at making the agro-industrial sector more adherent to the principles of circular economy and sustainability.
Collapse
Affiliation(s)
- Leonardo Agnusdei
- Department of Innovation Engineering, University of Salento, Via per Monteroni snc, Lecce, Italy
| | - Mladen Krstić
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via per Monteroni snc, Lecce, Italy; Faculty of Transport and Traffic Engineering, University of Belgrade, Vojvode Stepe 305, Beograd, Serbia
| | - Pamela Palmi
- Department of Economic Sciences, University of Salento, Via per Monteroni snc, Lecce, Italy
| | - Pier Paolo Miglietta
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via per Monteroni snc, Lecce, Italy.
| |
Collapse
|
5
|
Singh V, Sharma SK. Application of blockchain technology in shaping the future of food industry based on transparency and consumer trust. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1237-1254. [PMID: 36936108 PMCID: PMC10020414 DOI: 10.1007/s13197-022-05360-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/23/2021] [Accepted: 12/30/2021] [Indexed: 11/25/2022]
Abstract
Food Industries, at this moment, are moving towards a new phase, and this phase will be governed by consumers and not by the industry leaders. The report shows that claims on sustainability, health, wellness, and transparency would govern the future trends in the food industry. Currently, there are several cases of misleading and false claims which hamper consumer trust. So, to uphold consumer trust, authentication of claims through transparency in the food supply chain is required, and blockchain technology can bring transparency at relatively low transaction costs. Once in a blockchain network, data is very difficult to manipulate, with no single point of authority to mess and collapse the system. Though we see mostly the financial systems using blockchain's decentralized functionality, there is a growing trend of innovative applications being built in the supply chain area for contracts and operations. With effort in the right direction and over time, blockchain will recast how operations and processes are done across the industry, including public sectors. The paper reviews the opportunity for the blockchain in enabling food industries for future-readiness, empowering the consumers in verifying the product claims and thus prevent themselves from food fraud. In doing so, the paper considers the future trends in the food industry, identifies current food fraud cases, and outlines the various applications in the agri-food chain and challenges associated with it. Graphical abstract
Collapse
Affiliation(s)
- Vinay Singh
- Present Address: BASF SE, Pfalzgrafenstraße 1, 67061 Ludwigshafen am Rhein, Germany
- Department of Business Administration, National Central University, No. 300, Zhongda Road, Zhongli District, Taoyuan City, 320 Taiwan
| | | |
Collapse
|
6
|
Hassoun A, Alhaj Abdullah N, Aït-Kaddour A, Ghellam M, Beşir A, Zannou O, Önal B, Aadil RM, Lorenzo JM, Mousavi Khaneghah A, Regenstein JM. Food traceability 4.0 as part of the fourth industrial revolution: key enabling technologies. Crit Rev Food Sci Nutr 2022; 64:873-889. [PMID: 35950635 DOI: 10.1080/10408398.2022.2110033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food Traceability 4.0 (FT 4.0) is about tracing foods in the era of the fourth industrial revolution (Industry 4.0) with techniques and technologies reflecting this new revolution. Interest in food traceability has gained momentum in response to, among others events, the outbreak of the COVID-19 pandemic, reinforcing the need for digital food traceability that prevents food fraud and provides reliable information about food. This review will briefly summarize the most common conventional methods available to determine food authenticity before highlighting examples of emerging techniques that can be used to combat food fraud and improve food traceability. A particular focus will be on the concept of FT 4.0 and the significant role of digital solutions and other relevant Industry 4.0 innovations in enhancing food traceability. Based on this review, a possible new research topic, namely FT 4.0, is encouraged to take advantage of the rapid digitalization and technological advances occurring in the era of Industry 4.0. The main FT 4.0 enablers are blockchain, the Internet of things, artificial intelligence, and big data. Digital technologies in the age of Industry 4.0 have significant potential to improve the way food is traced, decrease food waste and reduce vulnerability to fraud opening new opportunities to achieve smarter food traceability. Although most of these emerging technologies are still under development, it is anticipated that future research will overcome current limitations making large-scale applications possible.
Collapse
Affiliation(s)
- Abdo Hassoun
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
- Syrian Academic Expertise (SAE), Gaziantep, Turkey
| | | | | | - Mohamed Ghellam
- Faculty of Engineering, Food Engineering Department, Ondokuz Mayis University, Samsun, Turkey
| | - Ayşegül Beşir
- Faculty of Engineering, Food Engineering Department, Ondokuz Mayis University, Samsun, Turkey
| | - Oscar Zannou
- Faculty of Engineering, Food Engineering Department, Ondokuz Mayis University, Samsun, Turkey
| | - Begüm Önal
- Gourmet International Ltd, Izmir, Turkey
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
7
|
Hassoun A, Harastani R, Jagtap S, Trollman H, Garcia-Garcia G, Awad NMH, Zannou O, Galanakis CM, Goksen G, Nayik GA, Riaz A, Maqsood S. Truths and myths about superfoods in the era of the COVID-19 pandemic. Crit Rev Food Sci Nutr 2022; 64:585-602. [PMID: 35930325 DOI: 10.1080/10408398.2022.2106939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Nowadays, during the current COVID-19 pandemic, consumers increasingly seek foods that not only fulfill the basic need (i.e., satisfying hunger) but also enhance human health and well-being. As a result, more attention has been given to some kinds of foods, termed "superfoods," making big claims about their richness in valuable nutrients and bioactive compounds as well as their capability to prevent illness, reinforcing the human immune system, and improve overall health.This review is an attempt to uncover truths and myths about superfoods by giving examples of the most popular foods (e.g., berries, pomegranates, watermelon, olive, green tea, several seeds and nuts, honey, salmon, and camel milk, among many others) that are commonly reported as having unique nutritional, nutraceutical, and functional characteristics.While superfoods have become a popular buzzword in blog articles and social media posts, scientific publications are still relatively marginal. The reviewed findings show that COVID-19 has become a significant driver for superfoods consumption. Food Industry 4.0 innovations have revolutionized many sectors of food technologies, including the manufacturing of functional foods, offering new opportunities to improve the sensory and nutritional quality of such foods. Although many food products have been considered superfoods and intensively sought by consumers, scientific evidence for their beneficial effectiveness and their "superpower" are yet to be provided. Therefore, more research and collaboration between researchers, industry, consumers, and policymakers are still needed to differentiate facts from marketing gimmicks and promote human health and nutrition.
Collapse
Affiliation(s)
- Abdo Hassoun
- Sustainable AgriFoodtch Innovation & Research (SAFIR), Arras, France
- Syrian Academic Expertise (SAE), Gaziantep, Turkey
| | - Rania Harastani
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK
| | - Sandeep Jagtap
- Sustainable Manufacturing Systems Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield, UK
| | - Hana Trollman
- Department of Work, Employment, Management and Organisations, School of Business, University of Leicester, Leicester, UK
| | - Guillermo Garcia-Garcia
- Department of Agrifood System Economics, Centre 'Camino de Purchil', Institute of Agricultural and Fisheries Research and Training (IFAPA), Granada, Spain
| | - Nour M H Awad
- Faculty of Engineering, Food Engineering Department, Ondokuz Mayis University, Samsun, Turkey
| | - Oscar Zannou
- Faculty of Engineering, Food Engineering Department, Ondokuz Mayis University, Samsun, Turkey
| | - Charis M Galanakis
- Department of Research & Innovation, Galanakis Laboratories, Chania, Greece
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
- Food Waste Recovery Group, ISEKI Food Association, Vienna, Austria
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Turkey
| | - Gulzar Ahmad Nayik
- Department of Food Science and Technology, Government Degree College, Shopian, Jammu & Kashmir, India
| | - Asad Riaz
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
8
|
He Y, Xu W, Qu M, Zhang C, Wang W, Cheng F. Recent advances in the application of Raman spectroscopy for fish quality and safety analysis. Compr Rev Food Sci Food Saf 2022; 21:3647-3672. [PMID: 35794726 DOI: 10.1111/1541-4337.12968] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/29/2022] [Accepted: 04/14/2022] [Indexed: 11/27/2022]
Abstract
Fish is one of the highly demanded aquatic products, and its quality and safety play a pivotal role in daily diet. However, the possible hazardous substance in perishable fish both in pre- and postharvest periods may decrease their values and pose a threat to public health. Laborious and expensive traditional methods drive the need of developing effective tools for detecting fish quality and safety properties in a rapid, nondestructive, and effective manner. Recent advances in Raman spectroscopy (RS) and surface-enhanced Raman scattering (SERS) have shown enormous potential in various aspects, which largely boost their applications in fish quality and safety evaluation. They have incomparable merits such as providing molecule fingerprint information and allowing for rapid, sensitive, and noninvasive detection with simple sample preparation. This review provides a comprehensive overview focusing on the applications of RS and SERS for fish quality assessment and safety inspection, highlighting the hazardous substance and illegal behavior both in preharvest (veterinary drug residues and environmental pollutants) and postharvest (freshness and illegal behavior) particularly. Moreover, challenges and prospects are also proposed to facilitate the vigorous development of RS and SERS. This review is aimed to emphasize potential opportunities for applying RS and SERS as promising techniques for routine food quality and safety detection. PRACTICAL APPLICATION: With these applications, it can be clearly indicated that RS and SERS are promising and powerful in fish quality and safety surveillance, thereby reducing the occurrence of commercial fraud and food safety issues. More efforts still should be concentrated on exploiting the high-performance Raman instruments, establishing a universal Raman database, developing reproducible SERS substrates and combing RS with other versatile spectral techniques to promote these technologies from laboratory to practice. It is hoped that this review should arouse more research interests in RS and SERS technologies for fish quality and safety surveillance, as well as provide more insights to make a breakthrough.
Collapse
Affiliation(s)
- Yingchao He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Key Laboratory of On Site Processing Equipment for Agricultural Products of Ministry of Agriculture and Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, China
| | - Weidong Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Maozhen Qu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Key Laboratory of On Site Processing Equipment for Agricultural Products of Ministry of Agriculture and Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, China
| | - Chao Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Key Laboratory of On Site Processing Equipment for Agricultural Products of Ministry of Agriculture and Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, China
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou, China
| | - Fang Cheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Key Laboratory of On Site Processing Equipment for Agricultural Products of Ministry of Agriculture and Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, China
| |
Collapse
|
9
|
Blockchain Technology toward Creating a Smart Local Food Supply Chain. COMPUTERS 2022. [DOI: 10.3390/computers11060095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The primary purpose of the supply chains is to ensure and secure the availability and smooth flow of the necessary resources for efficient production processes and consumption. Supply chain activities have been experiencing significant changes due to the importance and creation of the integrated process. Blockchain is viewed as an innovative tool for transforming supply chain management’s (SCM’s) actual business model; on the other hand, the SCM provides an applicative value of blockchain technology. The research is focused on examining the influence of blockchain technology on the increasing efficiency, transparency, auditability, traceability, and security issues of the food supply chain (FSC), with particular attention to the local food supply chain (LFSC). The main objective of the research is to suggest the implementation of blockchain technology in the local food supply chain as a niche of the food industry. The result of the research is the identification of a three-layers model of a smart local food supply chain. The model provides efficient and more transparent tracking across the local food supply chain, improving food accessibility, traceability, and safety.
Collapse
|
10
|
Hassoun A, Aït-Kaddour A, Abu-Mahfouz AM, Rathod NB, Bader F, Barba FJ, Biancolillo A, Cropotova J, Galanakis CM, Jambrak AR, Lorenzo JM, Måge I, Ozogul F, Regenstein J. The fourth industrial revolution in the food industry-Part I: Industry 4.0 technologies. Crit Rev Food Sci Nutr 2022; 63:6547-6563. [PMID: 35114860 DOI: 10.1080/10408398.2022.2034735] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Climate change, the growth in world population, high levels of food waste and food loss, and the risk of new disease or pandemic outbreaks are examples of the many challenges that threaten future food sustainability and the security of the planet and urgently need to be addressed. The fourth industrial revolution, or Industry 4.0, has been gaining momentum since 2015, being a significant driver for sustainable development and a successful catalyst to tackle critical global challenges. This review paper summarizes the most relevant food Industry 4.0 technologies including, among others, digital technologies (e.g., artificial intelligence, big data analytics, Internet of Things, and blockchain) and other technological advances (e.g., smart sensors, robotics, digital twins, and cyber-physical systems). Moreover, insights into the new food trends (such as 3D printed foods) that have emerged as a result of the Industry 4.0 technological revolution will also be discussed in Part II of this work. The Industry 4.0 technologies have significantly modified the food industry and led to substantial consequences for the environment, economics, and human health. Despite the importance of each of the technologies mentioned above, ground-breaking sustainable solutions could only emerge by combining many technologies simultaneously. The Food Industry 4.0 era has been characterized by new challenges, opportunities, and trends that have reshaped current strategies and prospects for food production and consumption patterns, paving the way for the move toward Industry 5.0.
Collapse
Affiliation(s)
- Abdo Hassoun
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
- Syrian Academic Expertise (SAE), Gaziantep, Turkey
| | | | - Adnan M Abu-Mahfouz
- Council for Scientific and Industrial Research, Pretoria, South Africa
- Department of Electrical & Electronic Engineering Science, University of Johannesburg, Johannesburg, South Africa
| | - Nikheel Bhojraj Rathod
- Department of Post-Harvest Management of Meat, Poultry and Fish, Post-Graduate Institute of Post-Harvest Management, Raigad, Maharashtra, India
| | - Farah Bader
- Saudi Goody Products Marketing Company Ltd, Jeddah, Saudi Arabia
| | - Francisco J Barba
- Nutrition and Bromatology Area, Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, València, Spain
| | - Alessandra Biancolillo
- Department of Physical and Chemical Sciences, University of L'Aquila, Coppito, L'Aquila, Italy
| | - Janna Cropotova
- Department of Biological Sciences in Ålesund, Norwegian University of Science and Technology, Ålesund, Norway
| | - Charis M Galanakis
- Research & Innovation Department, Galanakis Laboratories, Chania, Greece
- Food Waste Recovery Group, ISEKI Food Association, Vienna, Austria
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| | - Ingrid Måge
- Fisheries and Aquaculture Research, Nofima - Norwegian Institute of Food, Ås, Norway
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Joe Regenstein
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|