1
|
Hofmann T, Visi-Rajczi E, Vaculciakova S, Guran R, Voberkova S, Vrsanska M, Zitka O, Albert L. Direct microwave treatment enhances antioxidant and antibacterial properties of the seed extracts of Kékfrankos grapes. Heliyon 2023; 9:e21497. [PMID: 38027737 PMCID: PMC10654152 DOI: 10.1016/j.heliyon.2023.e21497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
The Kékfrankos is the most frequently cultivated wine grape in Hungary, with a significant national and regional impact, resulting in considerable amounts of byproducts (e.g. pomace, seeds). To the best of our knowledge no research has been conducted on the antioxidant and antibacterial properties of its seed extracts (GSE). A novel apporach of applying direct microwave treatment on grape seeds was implemented for the first time to enhance antioxidant and antimicrobial properties of GSE. Antioxidant properties were assayed using the DPPH (2,2-diphenyl-1-picrylhydrazyl), FRAP (Ferric Reducing Antioxidant Power) and TPC (Folin-Ciocâlteu's Total Polyphenol Content) methods. Profile and content of polyphenols was studied using high-performance liquid chromatography/tandem mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry. Antibacterial properties were evaluated using Gram-positive Staphylococcus aureus (SA), methicillin-resistant Staphylococcus aureus (ST239) (MRSA) and Gram-negative Escherichia coli (EC) bacteria strains. Results proved that the mild direct microwave treatment of grape seeds significantly increased total polyphenol, (+)-catechin, (-)-epicatechin as well as antioxidant capacity levels by 20-30 % compared to untreated samples and resulted the best antibacterial properties based on bacterial growth curves (SA and MRSA: 0.015625 mg/mL, EC: 0.25 mg/mL). Results justify the importance of further pharmacological investigations on Kékfrankos grape seed extracts and that the direct microwave treatment of grape seeds is an innovative approach for the fast and cost efficient improvement of the antibacterial properties of grape seed extracts.
Collapse
Affiliation(s)
- Tamás Hofmann
- University of Sopron, Faculty of Forestry, Institute of Environmental Protection and Nature Conservation, Bajcsy-Zsilinszky út 4, Sopron, 9400, Hungary
| | - Eszter Visi-Rajczi
- University of Sopron, Faculty of Forestry, Institute of Environmental Protection and Nature Conservation, Bajcsy-Zsilinszky út 4, Sopron, 9400, Hungary
| | - Silvia Vaculciakova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, CZ-61300, Brno, Czech Republic
| | - Roman Guran
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, CZ-61300, Brno, Czech Republic
| | - Stanislava Voberkova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, CZ-61300, Brno, Czech Republic
| | - Martina Vrsanska
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, CZ-61300, Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, CZ-61300, Brno, Czech Republic
| | - Levente Albert
- University of Sopron, Faculty of Forestry, Institute of Environmental Protection and Nature Conservation, Bajcsy-Zsilinszky út 4, Sopron, 9400, Hungary
| |
Collapse
|
2
|
Tas A, Gundogdu M, Ercisli S, Orman E, Celik K, Marc RA, Buckova M, Adamkova A, Mlcek J. Fruit Quality Characteristics of Service Tree ( Sorbus domestica L.) Genotypes. ACS OMEGA 2023; 8:19862-19873. [PMID: 37305234 PMCID: PMC10249094 DOI: 10.1021/acsomega.3c01788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023]
Abstract
In this study, agro-morphological properties, phenolic compounds, and organic acid contents in the fruits of service tree (Sorbus domestica L.) genotypes naturally grown in Türkiye (Bolu) were determined. The fruit weights of genotypes were found to be quite variable, ranging from 5.42 g (14MR05) to 12.54 g (14MR07). The highest L*, a*, and b* fruit external color values were found to be 34.65 (14MR04), 10.48 (14MR09), and 9.10 (14MR08), respectively. The highest chroma and hue values were recorded as 12.87 (14MR09) and 49.07 (14MR04), respectively. 14MR03 and 14MR08 genotypes exhibited the highest amount of soluble solid content and titratable acidity (TA) as 20.58 and 1.55%, respectively. The pH value was found to be in the range of 3.98 (14MR010)-4.32 (14MR04). Chlorogenic acid (14MR10, 48.49 mg/100 g), ferulic acid (14MR10, 36.93 mg/100 g), and rutin (14MR05, 36.95 mg/100 g) were predominant phenolic acids observed in the fruits of service tree genotypes. The predominant organic acid in all fruit samples was malic acid (14MR07, 34.14 g/kg fresh weight basis), and the highest quantity of vitamin C was detected at 95.83 mg/100 g in genotype 14MR02. Principal component analyses (%) were performed to determine the correlation between the morphological-physicochemical (60.6%) and biochemical characteristics of genotypes (phenolic compounds: 54.3%; organic acids and vitamin C: 79.9%). It was determined that measured genotypes were important genetic resources in terms of nutritional value.
Collapse
Affiliation(s)
- Akgul Tas
- Department
of Plant and Animal Production, Seben İzzet Baysal Vocational
School, Bolu Abant Izzet Baysal University, 14750 Seben Bolu, Turkey
| | - Muttalip Gundogdu
- Department
of Horticulture, Faculty of Agriculture, Bolu Abant Izzet Baysal University, 14030 Bolu, Turkey
| | - Sezai Ercisli
- Department
of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
- HGF
Agro, Ata Teknokent, TR-25240 Erzurum, Turkey
| | - Erdal Orman
- Ataturk
Horticultural Central Research Institute, 77100 Yalova, Turkey
| | - Kenan Celik
- GAP International
Agricultural Research and Training Center, 21000 Diyarbakır, Turkey
| | - Romina Alina Marc
- Food
Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary
Medicine, 400372 Cluj-Napoca, Romania
- Technological
Transfer Center “CTT-BioTech”, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Floreşti Street, No.
64, 400509 Cluj-Napoca, Romania
| | - Martina Buckova
- Department
of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 5669, 76001 Zlin, Czech
Republic
| | - Anna Adamkova
- Department
of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 5669, 76001 Zlin, Czech
Republic
| | - Jiri Mlcek
- Department
of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 5669, 76001 Zlin, Czech
Republic
| |
Collapse
|
3
|
Dong W, Cao S, Zhou Q, Jin S, Zhou C, Liu Q, Li X, Chen W, Yang Z, Shi L. Hydrogen-rich water treatment increased several phytohormones and prolonged the shelf life in postharvest okras. FRONTIERS IN PLANT SCIENCE 2023; 14:1108515. [PMID: 36866361 PMCID: PMC9971804 DOI: 10.3389/fpls.2023.1108515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Hydrogen-rich water (HRW) treatment has been reported to delay the softening and senescence of postharvest okras, but its regulatory mechanism remains unclear. In this paper, we investigated the effects of HRW treatment on the metabolism of several phytohormones in postharvest okras, which act as regulatory molecules in fruit ripening and senescence processes. The results showed that HRW treatment delayed okra senescence and maintained fruit quality during storage. The treatment upregulated all of the melatonin biosynthetic genes such as AeTDC, AeSNAT, AeCOMT and AeT5H, contributing to the higher melatonin content in the treated okras. Meanwhile, increased transcripts of anabolic genes but lower expression of catabolic genes involved in indoleacetic acid (IAA) and gibberellin (GA) metabolism were observed in okras when treated with HRW, which was related to the enhanced levels of IAA and GA. However, the treated okras experienced lower abscisic acid (ABA) content as compared to the non-treated fruit due to the down-regulation of its biosynthetic genes and up-regulation of the degradative gene AeCYP707A. Additionally, there was no difference in γ-aminobutyric acid between the non-treated and HRW-treated okras. Collectively, our results indicated that HRW treatment increased levels of melatonin, GA and IAA, but decreased ABA content, which ultimately delayed fruit senescence and prolonged shelf life in postharvest okras.
Collapse
|
4
|
Li F, Lv Z, Zhong Z, Mao L, Chua LS, Xu L, Huang R. The Effect of Cyclosporin A on Aspergillus niger and the Possible Mechanisms Involved. Foods 2023; 12:foods12030567. [PMID: 36766095 PMCID: PMC9913951 DOI: 10.3390/foods12030567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/01/2023] Open
Abstract
Aspergillus niger is one of the major pathogenic fungi causing postharvest grape decay. The development of antifungal agents is beneficial to reduce the loss of grapes during storage. The aim of this study was to investigate the antifungal mechanism of cyclosporin A (CsA). It was indicated that the rot development on grapes caused by A. niger was almost completely inhibited with CsA in vivo at a concentration of 200 mg/L. The transcriptomic analysis revealed that the expression levels of genes involved in rRNA processing and ribosome biogenesis were down-regulated, whereas those related to β-glucosidases and chitinases were up-regulated. The results implied that CsA may disturb rRNA and ribosome formation to obstruct protein synthesis, accelerate chitin and glucan degradation to destruct cell walls, and ultimately reduce postharvest decay caused by A. niger in grapes. This study evaluated the potential of CsA as a grape preservative and provided new insights into the mechanisms underlying the molecular response in A. niger with the treatment of CsA.
Collapse
Affiliation(s)
- Fengming Li
- School of Life Sciences, Huizhou University, Huizhou 516001, China
- College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhencheng Lv
- School of Life Sciences, Huizhou University, Huizhou 516001, China
| | - Zhijuan Zhong
- School of Life Sciences, Huizhou University, Huizhou 516001, China
| | - Lutian Mao
- School of Life Sciences, Huizhou University, Huizhou 516001, China
| | - Lee Suan Chua
- Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysis, UTM Skudai, Johor Bahru 81310, Malaysia
| | - Liangxiong Xu
- School of Life Sciences, Huizhou University, Huizhou 516001, China
- Correspondence: (L.X.); (R.H.)
| | - Riming Huang
- College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (L.X.); (R.H.)
| |
Collapse
|
5
|
Park M, Darwish AG, Elhag RI, Tsolova V, Soliman KFA, El-Sharkawy I. A multi-locus genome-wide association study reveals the genetics underlying muscadine antioxidant in berry skin. FRONTIERS IN PLANT SCIENCE 2022; 13:969301. [PMID: 35991419 PMCID: PMC9386419 DOI: 10.3389/fpls.2022.969301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Muscadine berries display enhanced nutraceutical value due to the accumulation of distinctive phytochemical constituents with great potential antioxidant activity. Such nutritional and health merits are not only restricted to muscadine, but muscadine berries accumulate higher amounts of bioactive polyphenolics compared with other grape species. For the genetic study of the antioxidant trait in muscadine, a multi-locus genome-wide association study (GWAS) with 350 muscadine genotypes and 1,283 RNase H2 enzyme-dependent amplicon sequencing (rhAmpSeq) markers was performed. Phenotyping was conducted with several antioxidant-related traits, including total phenolic content (TPC), total flavonoid content (TFC), 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity, and FRAP antioxidant assay in muscadine berry skin. The correlation coefficient analysis revealed that the TPC, and DPPH/FRAP activities were significantly correlated. Through the GWAS analysis, 12 QTNs were identified from the four traits, of which six were pleiotropic QTNs. Two pleiotropic QTNs, chr2_14464718 and chr4_16491374, were commonly identified from the TPC and DPPH/FRAP activities. Co-located genes with the two pleiotropic QTNs were isolated, and two candidate genes were identified with transcriptome analysis. UDP-glycosyltransferase and 4-hydroxy-4-methyl-2-oxoglutarate aldolase were the candidate genes that are positively and negatively correlated to the quantitative property of traits, respectively. These results are the first genetic evidence of the quantitative property of antioxidants in muscadine and provide genetic resources for breeding antioxidant-rich cultivars for both Muscadinia and Euvitis species.
Collapse
Affiliation(s)
- Minkyu Park
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Ahmed G. Darwish
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, United States
- Department of Biochemistry, Faculty of Agriculture, Minia University, Minia, Egypt
| | - Rashid I. Elhag
- College of Science and Technology, Florida A&M University, Tallahassee, FL, United States
| | - Violeta Tsolova
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Karam F. A. Soliman
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Islam El-Sharkawy
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, United States
| |
Collapse
|
6
|
Li X, Li T, Li M, Chen D, Liu X, Zhao S, Dai X, Chen J, Kong Z, Tan J. Effect of Pathogenic Fungal Infestation on the Berry Quality and Volatile Organic Compounds of Cabernet Sauvignon and Petit Manseng Grapes. FRONTIERS IN PLANT SCIENCE 2022; 13:942487. [PMID: 35937365 PMCID: PMC9353940 DOI: 10.3389/fpls.2022.942487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The effect of pathogenic fungal infestation on berry quality and volatile organic compounds (VOCs) of Cabernet Sauvignon (CS) and Petit Manseng (PM) were investigated by using biochemical assays and gas chromatography-ion mobility spectrometry. No significant difference in diseases-affected grapes for 100-berry weight. The content of tannins and vitamin C decreased significantly in disease-affected grapes, mostly in white rot-affected PM, which decreased by 71.67% and 66.29%. The reduced total flavonoid content in diseases-affected grape, among which the least and most were anthracnose-affected PM (1.61%) and white rot-affected CS (44.74%). All diseases-affected CS had much higher titratable acid, a maximum (18.86 g/100 ml) was observed in the gray mold-affected grapes, while only anthracnose-affected grapes with a higher titratable acid level (21.8 g/100 mL) were observed in PM. A total of 61 VOCs were identified, including 14 alcohols, 13 esters, 12 aldehydes, 4 acids, 4 ketones, 1 ether, and 13 unknown compounds, which were discussed from different functional groups, such as C6-VOCs, alcohols, ester acetates, aldehydes, and acids. The VOCs of CS changed more than that of Petit Manseng's after infection, while gray mold-affected Cabernet Sauvignon had the most change. C6-VOCs, including hexanal and (E)-2-hexenal were decreased in all affected grapes. Some unique VOCs may serve as hypothetical biomarkers to help us identify specific varieties of pathogenic fungal infestation.
Collapse
Affiliation(s)
- Xueyao Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tinggang Li
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Minmin Li
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Deyong Chen
- College of Life Sciences, Tarim University, Alar, China
| | - Xiaowei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shanshan Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofeng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jieyin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiqiang Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianxin Tan
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
7
|
Abstract
The purpose of this work is to present the archaeological and historical background of viticulture and winemaking from ancient times to the present day in the Mediterranean basin. According to recent archaeological, archaeochemical and archaeobotanical data, winemaking emerged during the Neolithic period (c. 7th–6th millennium BC) in the South Caucasus, situated between the basins of the Black and Caspian Seas, and subsequently reached the Iberian Peninsula and Western Europe during the local beginning of Iron Age (c. 8th century BC), following the main maritime civilizations. This review summarises the most relevant findings evidencing that the expansion of wine production, besides depending on adequate pedo-climatic conditions and wine-growing practices, also required the availability of pottery vessels to properly ferment, store and transport wine without deterioration. The domestication of wild grapevines enabled the selection of more productive varieties, further sustaining the development of wine trade. Other fermented beverages such as mead and beer gradually lost their relevance and soon wine became the most valorised. Together with grapes, it became an object and a system of value for religious rituals and social celebrations throughout successive ancient Western civilizations. Moreover, wine was used for medicinal purposes and linked to a wide variety of health benefits. In everyday life, wine was a pleasant drink consumed by the elite classes and commoner populations during jubilee years, festivals, and banquets, fulfilling the social function of easy communication. In the present work, emphasis is put on the technical interpretation of the selected archaeological and historical sources that may explain present viticultural and oenological practices. Hopefully, this review will contribute to nurturing mutual understanding between archaeologists and wine professionals.
Collapse
|