1
|
Vicente C, Silva JR, Santos AD, Silva JF, Mano JT, Castro LM. Electrocoagulation treatment of furniture industry wastewater. CHEMOSPHERE 2023; 328:138500. [PMID: 36963577 DOI: 10.1016/j.chemosphere.2023.138500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 06/18/2023]
Abstract
Electrocoagulation was investigated as a method for treating wastewater containing polyvinyl acetate (PVAc) from the furniture industry. The study evaluated the evolution of iron concentration and passivation during the treatment process. Laboratory-scale experiments were conducted to evaluate the effects of inter-electrode distance (d), current density, and mode on treatment performance. Three values of d (0.3, 0.6, and 0.9 cm) were studied and found to have no significant effect on performance. However, lower d values resulted in reduced energy consumption due to a decrease in applied voltage. Three values of current density (132, 158, and 197 A m-2) were studied under two current modes, Direct Current (DC) and Alternating Pulsed Current (APC). The best treatment performance for DC occurred under 158 A m-2 (the treated wastewater was characterized by pH = 4.59 ± 0.02, conductivity = 996 ± 21 μS cm-1, COD = 1940 ± 55 mgO2 L-1, TSS = 105 ± 14 mg L-1, and Fe = 50.39 ± 1.87 mgFe L-1). For APC, the best performance was achieved under 197 A m-2 (the treated wastewater was characterized by pH = 6.33 ± 0.06, conductivity = 988 ± 17 μS cm-1, COD = 1942 ± 312 mgO2 L-1, TSS = 199 ± 55 mg L-1, and Fe = 44.68 ± 4.60 mgFe L-1). Despite the promising results, treatment performance was insufficient to meet the legal requirements for water discharge. APC was found to be a more economically viable approach, as it reduced anode wear, electrode passivation, and energy consumption. The quantity of iron released increased with d, and the effect of current density on iron concentration was found to be non-linear. However, applying APC reduced the iron content for all tested current densities. The tests showed that EC was effective in removing chemical oxygen demand (COD) and total suspended solids (TSS), achieving removal efficiencies above 92% and 99%, respectively. However, the studied treatment procedures were insufficient to meet the EU legal requirements for water discharge. Therefore, the obtained wastewater should undergo a post-treatment process.
Collapse
Affiliation(s)
- Carolina Vicente
- Polytechnic of Coimbra, Coimbra Institute of Engineering, Department of Chemical and Biological Engineering, Rua Pedro Nunes - Quinta da Nora, 3030-199, Coimbra, Portugal
| | - João R Silva
- Polytechnic of Coimbra, Coimbra Institute of Engineering, Department of Chemical and Biological Engineering, Rua Pedro Nunes - Quinta da Nora, 3030-199, Coimbra, Portugal; CIEPQPF-Chemical Engineering Processes and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Rua Sílvio Lima, 3030-790, Coimbra, Portugal
| | - Andreia D Santos
- Polytechnic of Coimbra, Coimbra Institute of Engineering, Department of Chemical and Biological Engineering, Rua Pedro Nunes - Quinta da Nora, 3030-199, Coimbra, Portugal; CIEPQPF-Chemical Engineering Processes and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Rua Sílvio Lima, 3030-790, Coimbra, Portugal
| | - João F Silva
- Polytechnic of Coimbra, Coimbra Institute of Engineering, Department of Chemical and Biological Engineering, Rua Pedro Nunes - Quinta da Nora, 3030-199, Coimbra, Portugal
| | - Jorge T Mano
- IKEA Industry Portugal, SA, Avenida Capital do Móvel, Nº 157, 4595-282, Penamaior, Portugal
| | - Luis M Castro
- Polytechnic of Coimbra, Coimbra Institute of Engineering, Department of Chemical and Biological Engineering, Rua Pedro Nunes - Quinta da Nora, 3030-199, Coimbra, Portugal; CIEPQPF-Chemical Engineering Processes and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Rua Sílvio Lima, 3030-790, Coimbra, Portugal; SISus - Laboratory of Sustainable Industrial Systems, Coimbra Institute of Engineering, Department of Chemical and Biological Engineering, Rua Pedro Nunes - Quinta da Nora, 3030-199, Coimbra, Portugal.
| |
Collapse
|
2
|
Hadadi A, Imessaoudene A, Bollinger JC, Bouzaza A, Amrane A, Tahraoui H, Mouni L. Aleppo pine seeds (Pinus halepensis Mill.) as a promising novel green coagulant for the removal of Congo red dye: Optimization via machine learning algorithm. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117286. [PMID: 36640645 DOI: 10.1016/j.jenvman.2023.117286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Consideration is now being given to the use of metal coagulants to remove turbidity from drinking water and wastewater. Concerns about the long-term impact of non-biodegradable sludge on human health and the potential contamination of aquatic systems are gaining popularity. Recently, alternative biocoagulants have been suggested to address these concerns. In this study, using a 1 M sodium chloride (NaCl) solution, the active coagulating agent was extracted from Pinus halepensis Mill. Seed, and used for the first time to remove Congo red dye, the influence of numerous factors on dye removal was evaluated in order to make comparisons with conventional coagulants. The application of biocoagulant was shown to be very successful, with coagulant dosages ranging from 3 to 12 mL L-1 achieving up to 80% dye removal and yielding 28 mL L-1 of sludge. It was also found that biocoagulant is extremely pH sensitive with an optimum operating pH of 3. Ferric chloride, on the other hand, achieved similar removal rate with higher sludge production (46 mL L-1) under the same conditions. A Fourier Transform Infrared Spectroscopy and proximate composition analysis were undertaken to determine qualitatively the potential active coagulant ingredient in the seeds and suggested the involvement of proteins in the coagulation-flocculation mechanism. The evaluation criteria of the Support vector machine_Gray wolf optimizer model in terms of statistical coefficients and errors reveals quite interesting results and demonstrates the performance of the model, with statistical coefficients close to 1 (R = 0.9998, R2 = 0.9995 and R2 adj = 0.9995) and minimal statistical errors (RMSE = 0.5813, MSE = 0.3379, EPM = 0 0.9808, ESP = 0.9677 and MAE = 0.2382). The study findings demonstrate that Pinus halepensis Mill. Seed extract might be a novel, environmentally friendly, and easily available coagulant for water and wastewater treatment.
Collapse
Affiliation(s)
- Amina Hadadi
- Laboratoire de Gestion et Valorisation des Ressources Naturelles et Assurance Qualité. Faculté SNVST, Université de Bouira, 10000 Bouira, Algeria.
| | - Ali Imessaoudene
- Laboratoire de Gestion et Valorisation des Ressources Naturelles et Assurance Qualité. Faculté SNVST, Université de Bouira, 10000 Bouira, Algeria.
| | - Jean-Claude Bollinger
- Laboratoire E2Lim, Université de Limoges, 123 Avenue Albert Thomas, 87060 Limoges, France.
| | | | - Abdeltif Amrane
- Univ.Rennes, ENSCR, 11 Allée de Beaulieu, 35708 Rennes, France.
| | - Hichem Tahraoui
- Pharmaceutical Engineering Department, Process Engineering Faculty, Salah Boubnider Constantine 3 University, Constantine, Algeria.
| | - Lotfi Mouni
- Laboratoire de Gestion et Valorisation des Ressources Naturelles et Assurance Qualité. Faculté SNVST, Université de Bouira, 10000 Bouira, Algeria.
| |
Collapse
|