1
|
Tang L, Feng JC, Li C, Liang J, Zhang S, Yang Z. Global occurrence, drivers, and environmental risks of microplastics in marine environments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:116961. [PMID: 36542885 DOI: 10.1016/j.jenvman.2022.116961] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
With an increasing quantity of plastic waste being discharged into the oceans, marine microplastic (MP) pollution has received widespread attention. However, the global occurrence characteristics, environmental risks, driving factors, and source-sink relationships remain unclear. In this study, we conducted a meta-analysis based on 165 articles about marine MP pollution. It was found that the global marine MP abundance displayed a significant spatial heterogeneity, and the distribution pattern was influenced by offshore distance, population density, and economic development. The morphological characteristics of MPs showed a significant difference between seawater and marine sediment, and small-size MPs (<1 mm) accounted for the majority of all MPs in the marine environment. The environmental risk assessment revealed that most of the marine MP pollution still remains at low concentrations in the global context, with the Polyurethane (PU), Polyacrylonitrile (PAN), and Polyvinyl chloride (PVC) types of MPs showing high environmental-risk contributions. In addition, land-based waste and marine operations, which were considered to be the dominant sources of marine MPs, primarily aggregated at nearshore submarine areas, in the water column, and in the deep-sea bottom environment. This study suggested that the combination of a meta-analysis and Monte Carlo simulation can provide much valuable information regarding the global occurrence characteristics and environmental risks of marine MPs.
Collapse
Affiliation(s)
- Li Tang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, PR China
| | - Jing-Chun Feng
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, PR China.
| | - Canrong Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, PR China
| | - Jianzhen Liang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, PR China
| | - Si Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, PR China; South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Zhifeng Yang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, PR China
| |
Collapse
|