1
|
Babaei M, Abrishami A, Iranpour S, Saljooghi AS, Matin MM. Harnessing curcumin in a multifunctional biodegradable metal-organic framework (bio-MOF) for targeted colorectal cancer theranostics. Drug Deliv Transl Res 2024:10.1007/s13346-024-01707-6. [PMID: 39302530 DOI: 10.1007/s13346-024-01707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2024] [Indexed: 09/22/2024]
Abstract
Despite significant advancements in managing colorectal cancer (CRC), the issues of efficient diagnosis and targeted therapy remain demanding. To address these challenges and improve treatment outcomes while reducing the cost and side effects, there is a need for more effective theranostic systems that combine diagnostic techniques with therapeutic modalities. This study introduces a pioneering approach for the synthesis of a porous bio-MOF (biodegradable metal-organic framework) using iron as the metal component and curcumin as the pharmaceutical ingredient. Subsequently, the developed drug delivery system was equipped with the anticancer drug doxorubicin (DOX), coated with biocompatible polyethylene glycol (PEG), and targeted with a CRC-specific aptamer (EpCAM). The physicochemical characterization confirmed the successful synthesis of the bio-MOF, demonstrating high encapsulation efficiency and pH-dependent release of DOX. In vitro studies for anticancer activity, cellular uptake, and mechanism of cell death demonstrated that in the case of positive EpCAM HT-29 cells, Apt-PEG-MOF@DOX had enhanced internalization that resulted in massive apoptosis. In vivo studies of the nanoparticles were then conducted in immunocompromised C57BL/6 mice bearing HT-29 tumors. These studies showed that the targeted platform could induce efficient tumor regression with reduced systemic toxicity. The targeted bio-MOF also exhibited MRI imaging properties useful for monitoring tumors. Significantly, the biocompatibility of the introduced bio-MOF was enhanced by pursuing the green synthesis method, which does not engage toxic solvents and strong acids. Overall, this multimodal system acts diversely as a tumor imaging agent and a therapeutic delivery platform suitable for CRC theranostics.
Collapse
Affiliation(s)
- Maryam Babaei
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Abrishami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sonia Iranpour
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Sh Saljooghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
2
|
Zhou W, Long Z, Xu C, Zhang J, Zhou X, Song X, Huo P, Guo Y, Xue W, Wang Q, Zhou C. Advances in Functionalized Biocomposites of Living Cells Combined with Metal-Organic Frameworks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14749-14765. [PMID: 38989975 DOI: 10.1021/acs.langmuir.4c00404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Motivated by the remarkable innate characteristics of cells in living organisms, we have found that hybrid materials that combine bioorganisms with nanomaterials have significantly propelled advancements in industrial applications. However, the practical deployment of unmodified living entities is inherently limited due to their sensitivity to environmental fluctuations. To surmount these challenges, an efficacious strategy for the biomimetic mineralization of living organisms with nanomaterials has emerged, demonstrating extraordinary potential in biotechnology. Among them, innovative composites have been engineered by enveloping bioorganisms with a metal-organic framework (MOF) coating. This review systematically summarizes the latest developments in living cells/MOF-based composites, detailing the methodologies employed in structure fabrication and their diverse applications, such as bioentity preservation, sensing, catalysis, photoluminescence, and drug delivery. Moreover, the synergistic benefits arising from the individual compounds are elucidated. This review aspires to illuminate new prospects for fabricating living cells/MOF composites and concludes with a perspective on the prevailing challenges and impending opportunities for future research in this field.
Collapse
Affiliation(s)
- Weiqiang Zhou
- Institute of Laser and Optoelectronics Intelligent Manufacturing, Wenzhou University, Wenzhou 325035, China
- Institution of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zefeng Long
- Institution of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chuan Xu
- Institution of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Junge Zhang
- Institution of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xin Zhou
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xianghai Song
- Institution of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Pengwei Huo
- Institution of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yi Guo
- Institution of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wei Xue
- Institute of Laser and Optoelectronics Intelligent Manufacturing, Wenzhou University, Wenzhou 325035, China
| | - Quan Wang
- Institute of Laser and Optoelectronics Intelligent Manufacturing, Wenzhou University, Wenzhou 325035, China
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Chen Zhou
- Institute of Laser and Optoelectronics Intelligent Manufacturing, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
3
|
Niščáková V, Almáši M, Capková D, Kazda T, Čech O, Čudek P, Petruš O, Volavka D, Oriňaková R, Fedorková AS. Novel Cu(II)-based metal-organic framework STAM-1 as a sulfur host for Li-S batteries. Sci Rep 2024; 14:9232. [PMID: 38649384 PMCID: PMC11035644 DOI: 10.1038/s41598-024-59600-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Due to the increasing demand for energy storage devices, the development of high-energy density batteries is very necessary. Lithium-sulfur (Li-S) batteries have gained wide interest due to their particularly high-energy density. However, even this type of battery still needs to be improved. Novel Cu(II)-based metal-organic framework STAM-1 was synthesized and applied as a composite cathode material as a sulfur host in the lithium-sulfur battery with the aim of regulating the redox kinetics of sulfur cathodes. Prepared STAM-1 was characterized by infrared spectroscopy at ambient temperature and after in-situ heating, elemental analysis, X-ray photoelectron spectroscopy and textural properties by nitrogen and carbon dioxide adsorption at - 196 and 0 °C, respectively. Results of the SEM showed that crystals of STAM-1 created a flake-like structure, the surface was uniform and porous enough for electrolyte and sulfur infiltration. Subsequently, STAM-1 was used as a sulfur carrier in the cathode construction of a Li-S battery. The charge/discharge measurements of the novel S/STAM-1/Super P/PVDF cathode demonstrated the initial discharge capacity of 452 mAh g-1 at 0.5 C and after 100 cycles of 430 mAh g-1, with Coulombic efficiency of 97% during the whole cycling procedure at 0.5 C. It was confirmed that novel Cu-based STAM-1 flakes could accelerate the conversion of sulfur species in the cathode material.
Collapse
Affiliation(s)
- V Niščáková
- Department of Physical Chemistry, Faculty of Sciences, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 04154, Kosice, Slovak Republic
| | - M Almáši
- Department of Inorganic Chemistry, Faculty of Sciences, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 04154, Kosice, Slovak Republic
| | - D Capková
- Department of Physical Chemistry, Faculty of Sciences, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 04154, Kosice, Slovak Republic
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - T Kazda
- Department of Electrical and Electronic Technology, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 10, 616 00, Brno, Czech Republic
| | - O Čech
- Department of Electrical and Electronic Technology, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 10, 616 00, Brno, Czech Republic
| | - P Čudek
- Department of Electrical and Electronic Technology, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 10, 616 00, Brno, Czech Republic
| | - O Petruš
- Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 040 01, Kosice, Slovak Republic
| | - D Volavka
- Department of Solid State Physics, Faculty of Science, P. J. Šafárik University, Park Angelinum 9, 041 01, Kosice, Slovak Republic
| | - R Oriňaková
- Department of Physical Chemistry, Faculty of Sciences, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 04154, Kosice, Slovak Republic
- Centre of Polymer Systems, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, 760 01, Zlín, Czech Republic
| | - A S Fedorková
- Department of Physical Chemistry, Faculty of Sciences, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 04154, Kosice, Slovak Republic.
| |
Collapse
|
4
|
Zhi K, Xu J, Li S, Luo L, Liu D, Li Z, Guo L, Hou J. Progress in the Elimination of Organic Contaminants in Wastewater by Activation Persulfate over Iron-Based Metal-Organic Frameworks. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:473. [PMID: 38470802 DOI: 10.3390/nano14050473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/25/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
The release of organic contaminants has grown to be a major environmental concern and a threat to the ecology of water bodies. Persulfate-based Advanced Oxidation Technology (PAOT) is effective at eliminating hazardous pollutants and has an extensive spectrum of applications. Iron-based metal-organic frameworks (Fe-MOFs) and their derivatives have exhibited great advantages in activating persulfate for wastewater treatment. In this article, we provide a comprehensive review of recent research progress on the significant potential of Fe-MOFs for removing antibiotics, organic dyes, phenols, and other contaminants from aqueous environments. Firstly, multiple approaches for preparing Fe-MOFs, including the MIL and ZIF series were introduced. Subsequently, removal performance of pollutants such as antibiotics of sulfonamides and tetracyclines (TC), organic dyes of rhodamine B (RhB) and acid orange 7 (AO7), phenols of phenol and bisphenol A (BPA) by various Fe-MOFs was compared. Finally, different degradation mechanisms, encompassing free radical degradation pathways and non-free radical degradation pathways were elucidated. This review explores the synthesis methods of Fe-MOFs and their application in removing organic pollutants from water bodies, providing insights for further refining the preparation of Fe-MOFs.
Collapse
Affiliation(s)
- Keke Zhi
- Department of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
- State Key Laboratory, Heavy Oil Processing-Karamay Branch, Karamay 834000, China
| | - Jiajun Xu
- Department of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Shi Li
- Department of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Lingjie Luo
- Department of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Dong Liu
- Department of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Zhe Li
- State Key Laboratory, Heavy Oil Processing-Karamay Branch, Karamay 834000, China
- Department of Petroleum, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Lianghui Guo
- Department of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Junwei Hou
- Department of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
- State Key Laboratory, Heavy Oil Processing-Karamay Branch, Karamay 834000, China
| |
Collapse
|
5
|
Cevallos-Mendoza JE, Cedeño-Muñoz JS, Navia-Mendoza JM, Figueira F, Amorim CG, Rodríguez-Díaz JM, Montenegro MCBSM. Development of hybrid MIL-53(Al)@CBS for ternary adsorption of tetracyclines antibiotics in water: Physical interpretation of the adsorption mechanism. BIORESOURCE TECHNOLOGY 2024; 396:130453. [PMID: 38360217 DOI: 10.1016/j.biortech.2024.130453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/17/2024]
Abstract
In this study, a hybrid material, MIL-53(Al)@CBS, was synthesized via the solvothermal method, involving the growth of MIL-53(Al) crystals on cocoa bean shell residues (CBS). Physicochemical characterization techniques, including TGA, BET, FTIR, XRD, and SEM, confirmed successful hybridization. MIL-53(Al)@CBS was employed as an adsorbent for antibiotics (oxytetracycline, tetracycline, chlortetracycline) separation from aqueous solutions. Parameters like pH, adsorbent dose, concentration, time, and temperature were systematically evaluated. FTIR revealed π-π interactions and hydrogen bonds between tetracyclines and the adsorbent. MIL-53(Al)@CBS exhibited adsorption, with removal rates up to 98.92%, 99.04%, and 98.24% for OTC, TC, and CTC, respectively. Kinetics suggested adsorption depends on active site availability, with TC adsorbing fastest. Microscopic models showed adsorption on three distinct active site types with different affinities without competition or adherence to the Langmuir hypothesis. Importantly, MIL-53(Al)@CBS maintained high adsorption capacity even after ten washing cycles, highlighting its potential for water treatment.
Collapse
Affiliation(s)
- Jaime E Cevallos-Mendoza
- LAQV-REQUIMTE/Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, Ecuador
| | - Jeffrey Saúl Cedeño-Muñoz
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador
| | - Jennifer Maria Navia-Mendoza
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, Ecuador; Departamento de Química Orgánica, Universidad de Córdoba, Edificio Marie Curie (C-3), Campus de Rabanales, Ctra. Nnal. IV-A, Km 396, E14014 Córdoba, Spain
| | - Flávio Figueira
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Célia G Amorim
- LAQV-REQUIMTE/Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| | - Joan Manuel Rodríguez-Díaz
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, Ecuador.
| | - Maria C B S M Montenegro
- LAQV-REQUIMTE/Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
6
|
Li B, Ashrafizadeh M, Jiao T. Biomedical application of metal-organic frameworks (MOFs) in cancer therapy: Stimuli-responsive and biomimetic nanocomposites in targeted delivery, phototherapy and diagnosis. Int J Biol Macromol 2024; 260:129391. [PMID: 38242413 DOI: 10.1016/j.ijbiomac.2024.129391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
The nanotechnology is an interdisciplinary field that has become a hot topic in cancer therapy. Metal-organic frameworks (MOFs) are porous materials and hybrid composites consisted of organic linkers and metal cations. Despite the wide application of MOFs in other fields, the potential of MOFs for purpose of cancer therapy has been revealed by the recent studies. High surface area and porosity, significant drug loading and encapsulation efficiency are among the benefits of using MOFs in drug delivery. MOFs can deliver genes/drugs with selective targeting of tumor cells that can be achieved through functionalization with ligands. The photosensitizers and photo-responsive nanostructures including carbon dots and gold nanoparticles can be loaded in/on MOFs to cause phototherapy-mediated tumor ablation. The immunogenic cell death induction and increased infiltration of cytotoxic CD8+ and CD4+ T cells can be accelerated by MOF platforms in providing immunotherapy of tumor cells. The stimuli-responsive MOF platforms responsive to pH, redox, enzyme and ion can accelerate release of therapeutics in tumor site. Moreover, MOF nanocomposites can be modified ligands and green polymers to improve their selectivity and biocompatibility for cancer therapy. The application of MOFs for the detection of cancer-related biomarkers can participate in the early diagnosis of patients.
Collapse
Affiliation(s)
- Beixu Li
- School of Policing Studies, Shanghai University of Political Science and Law, Shanghai 201701, China; Shanghai Fenglin Forensic Center, Shanghai 200231, China; State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Department of Pathology, University of Maryland, Baltimore, MD 21201, USA
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.
| | - Taiwei Jiao
- Department of Gastroenterology and Endoscopy, The First Hospital of China Medical University, 155 North Nanjing St, Shenyang 110001, China.
| |
Collapse
|
7
|
Fang X, Zhang D, Chang Z, Li R, Meng S. Phosphorus removal from water by the metal-organic frameworks (MOFs)-based adsorbents: A review for structure, mechanism, and current progress. ENVIRONMENTAL RESEARCH 2024; 243:117816. [PMID: 38056614 DOI: 10.1016/j.envres.2023.117816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Efficacious phosphate removal is essential for mitigating eutrophication in aquatic ecosystems and complying with increasingly stringent phosphate emission regulations. Chemical adsorption, characterized by simplicity, prominent treatment efficiency, and convenient recovery, is extensively employed for profound phosphorus removal. Metal-organic frameworks (MOFs)-derived metal/carbon composites, surpassing the limitations of separate components, exhibit synergistic effects, rendering them tremendously promising for environmental remediation. This comprehensive review systematically summarizes MOFs-based materials' properties and their structure-property relationships tailored for phosphate adsorption, thereby enhancing specificity towards phosphate. Furthermore, it elucidates the primary mechanisms influencing phosphate adsorption by MOFs-based composites. Additionally, the review introduces strategies for designing and synthesizing efficacious phosphorus capture and regeneration materials. Lastly, it discusses and illuminates future research challenges and prospects in this field. This summary provides novel insights for future research on superlative MOFs-based adsorbents for phosphate removal.
Collapse
Affiliation(s)
- Xiaojie Fang
- Department of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Di Zhang
- Department of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Black Soil Protection and Restoration, Harbin, Heilongjiang, 150030, China.
| | - Zhenfeng Chang
- Department of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Ruoyan Li
- Department of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Shuangshuang Meng
- Department of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| |
Collapse
|
8
|
Agamendran N, Uddin M, Yesupatham MS, Shanmugam M, Augustin A, Kundu T, Kandasamy R, Sasaki K, Sekar K. Nanoarchitectonics Design Strategy of Metal-Organic Framework and Bio-Metal-Organic Framework Composites for Advanced Wastewater Treatment through Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38323568 DOI: 10.1021/acs.langmuir.3c02949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Freshwater depletion is an alarm for finding an eco-friendly solution to treat wastewater for drinking and domestic applications. Though several methods like chlorination, filtration, and coagulation-sedimentation are conventionally employed for water treatment, these methods need to be improved as they are not environmentally friendly, rely on chemicals, and are ineffective for all kinds of pollutants. These problems can be addressed by employing an alternative solution that is effective for efficient water treatment and favors commercial aspects. Metal organic frameworks (MOFs), an emerging porous material, possess high stability, pore size tunability, greater surface area, and active sites. These MOFs can be tailored; thus, they can be customized according to the target pollutant. Hence, MOFs can be employed as adsorbents that effectively target different pollutants. Bio-MOFs are a kind of MOFs that are incorporated with biomolecules, which also possess properties of MOFs and are used as a nontoxic adsorbent. In this review, we elaborate on the interaction between MOFs and target pollutants, the role of linkers in the adsorption of contaminants, tailoring strategy that can be employed on MOFs and Bio-MOFs to target specific pollutants, and we also highlight the effect of environmental matrices on adsorption of pollutants by MOFs.
Collapse
Affiliation(s)
- Nithish Agamendran
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Maseed Uddin
- Industrial and Environmental Sustainability Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Manova Santhosh Yesupatham
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Mariyappan Shanmugam
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Ashil Augustin
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Tanay Kundu
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Ramani Kandasamy
- Industrial and Environmental Sustainability Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Keiko Sasaki
- Department of Earth Resources Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Karthikeyan Sekar
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
9
|
Shashikumar U, Joshi S, Srivastava A, Tsai PC, Shree KDS, Suresh M, Ravindran B, Hussain CM, Chawla S, Ke LY, Ponnusamy VK. Trajectory in biological metal-organic frameworks: Biosensing and sustainable strategies-perspectives and challenges. Int J Biol Macromol 2023; 253:127120. [PMID: 37820902 DOI: 10.1016/j.ijbiomac.2023.127120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
The ligand attribute of biomolecules to form coordination bonds with metal ions led to the discovery of a novel class of materials called biomolecule-associated metal-organic frameworks (Bio-MOFs). These biomolecules coordinate in multiple ways and provide versatile applications. Far-spread bio-ligands include nucleobases, amino acids, peptides, cyclodextrins, saccharides, porphyrins/metalloporphyrin, proteins, etc. Low-toxicity, self-assembly, stability, designable and selectable porous size, the existence of rigid and flexible forms, bio-compatibility, and synergistic interactions between metal ions have led Bio-MOFs to be commercialized in industries such as sensors, food, pharma, and eco-sensing. The rapid growth and commercialization are stunted by absolute bio-compatibility issues, bulk morphology that makes it rigid to alter shape/porosity, longer reaction times, and inadequate research. This review elucidates the structural vitality, biocompatibility issues, and vital sensing applications, including challenges for incorporating bio-ligands into MOF. Critical innovations in Bio-MOFs' applicative spectrum, including sustainable food packaging, biosensing, insulin and phosphoprotein detection, gas sensing, CO2 capture, pesticide carriers, toxicant adsorptions, etc., have been elucidated. Emphasis is placed on biosensing and biomedical applications with biomimetic catalysis and sensitive sensor designing.
Collapse
Affiliation(s)
- Uday Shashikumar
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Somi Joshi
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201301, India
| | - Ananya Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India
| | - Kandkuri Dhana Sai Shree
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201301, India
| | - Meera Suresh
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201301, India
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Shashi Chawla
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201301, India.
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung City 807, Taiwan.
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan.; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Department of Chemistry, National Sun Yat-sen University, Kaohsiung City 804, Taiwan.
| |
Collapse
|
10
|
Pezhhanfar S, Farajzadeh MA, Hosseini-Yazdi SA, Afshar Mogaddam MR. NiGA MOF-based dispersive micro solid phase extraction coupled to temperature-assisted evaporation using low boiling point solvents for the extraction and preconcentration of butylated hydroxytoluene and some phthalate and adipate esters. RSC Adv 2023; 13:30378-30390. [PMID: 37854488 PMCID: PMC10580260 DOI: 10.1039/d3ra04612e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023] Open
Abstract
The first-ever attempt to apply nickel gallic acid metal-organic framework (NiGA MOF) in analytical method development was done in this research by the extraction of some plasticizers from aqueous media. The greenness of the method is owing to the use of gallic acid and nickel as safe reagents and water as the safest solvent. Low boiling point solvents were applied as desorption solvents that underwent temperature-assisted evaporation in the preconcentration step. Performing the evaporation using a low-temperature water bath for a short period of time streamlines the preconcentration section. Into the solution of interest enriched with sodium sulfate, a mg amount of NiGA MOF was added alongside vortexing to extract the analytes. Following centrifugation and discarding the supernatant, a μL level of diethyl ether was added onto the analyte-loaded NiGA MOF particles and vortexed. The analyte-enriched diethyl ether phase was transferred into a conical bottom glass test tube and located in a water bath set at the temperature of 35 °C under a laboratory hood. After the evaporation, a μL level of 1,2-dibromoethane was added to the test tube and vortexed to dissolve the analytes from the inner perimeter of the tube. One microliter of the organic phase was injected into a gas chromatograph equipped with flame ionization detection. Appreciable extraction recoveries (61-98%), high enrichment factors (305-490), low limits of detection (0.80-1.74 μg L-1) and quantification (2.64-5.74 μg L-1), and wide linear ranges (5.74-1000 μg L-1) were obtained at the optimum conditions.
Collapse
Affiliation(s)
- Sakha Pezhhanfar
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz Tabriz Iran +98 41 33340191 +98 41 33393084
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz Tabriz Iran +98 41 33340191 +98 41 33393084
- Engineering Faculty, Near East University 99138 Nicosia, North Cyprus Mersin 10 Turkey
| | | | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
11
|
Tajari E, Bashiri H. Gasoil removal from aqueous solution using magnetic metal-organic framework adsorbent based on the cellulosic fibrous of Prosopis farcta plant. Int J Biol Macromol 2023; 245:125473. [PMID: 37343608 DOI: 10.1016/j.ijbiomac.2023.125473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/30/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Recently, the leakage of Gasoil and other petroleum substances into the seas, surface water, and wastewater has become a global problem; therefore, providing a solution to remove these pollutants seems vital. In the current research, we investigated the removal of floating Gasoil from aqueous solutions. First, the magnetic metal-organic framework was prepared as a new adsorbent based on the cellulosic fibrous of the Prosopis farcta plant (magnetic- cellulose@MIL-53(Fe) carbon aerogel). Using design of experiment, the effect of parameters pH, Gasoil concentration, and adsorbent weight on Gasoil removal were investigated. The adsorbent prepared under optimal parameters can remove 100% floating Gasoil from the aqueous solution. The adsorption capacity of the magnetic- cellulose@MIL-53 (Fe) carbon aerogel is 7.48 g.g-1, which is almost 100 times more than other Fe-based adsorbents. The study of the effect of time showed that the adsorption of Gasoil by the adsorbent is not dependent on time. Gasoil adsorption on magnetic- cellulose@MIL-53(Fe) carbon aerogel follows the Freundlich isotherm with a correlation coefficient of 0.9933. Thermodynamic factors Gibbs free energy, enthalpy, and entropy changes have been calculated. Accordingly, magnetic- cellulose @MIL-53(Fe) carbon aerogel has rapid separation and high stability, and it could be used as a good adsorbent to remove Gasoil from an aqueous solution. With good cycling stability of 86% retention of the initial adsorption value after ten adsorption/desorption cycles.
Collapse
Affiliation(s)
- Elaheh Tajari
- Department of Physical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Hadis Bashiri
- Department of Physical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran.
| |
Collapse
|
12
|
Albert Aryee A, Gao C, Han R, Qu L. Synthesis of a novel magnetic biomass-MOF composite for the efficient removal of phosphates: Adsorption mechanism and characterization study. Chin J Chem Eng 2023. [DOI: 10.1016/j.cjche.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
13
|
Dutta M, Bora J, Chetia B. Overview on recent advances of magnetic metal-organic framework (MMOF) composites in removal of heavy metals from aqueous system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13867-13908. [PMID: 36547836 DOI: 10.1007/s11356-022-24692-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Developing a novel, simple, and cost-effective analytical technique with high enrichment capacity and selectivity is crucial for environmental monitoring and remediation. Metal-organic frameworks (MOFs) are porous coordination polymers that are self-assembly synthesized from organic linkers and inorganic metal ions/metal clusters. Magnetic metal-organic framework (MMOF) composites are promising candidate among the new-generation sorbent materials available for magnetic solid-phase extraction (MSPE) of environmental contaminants due to their superparamagnetism properties, high crystallinity, permanent porosity, ultrahigh specific surface area, adaptable pore shape/sizes, tunable functionality, designable framework topology, rapid and ultrahigh adsorption capacity, and reusability. In this review, we focus on recent scientific progress in the removal of heavy metal ions present in contaminated aquatic system by using MMOF composites. Different types of MMOFs, their synthetic approaches, and various properties that are harnessed for removal of heavy metal ions from contaminated water are discussed briefly. Adsorption mechanisms involved, adsorption capacity, and regeneration of the MMOF sorbents as well as recovery of heavy metal ions adsorbed that are reported in the last ten years have been discussed in this review. Moreover, particular prospects, challenges, and opportunities in future development of MMOFs towards their greener synthetic approaches for their practical industrial applications have critically been considered in this review.
Collapse
Affiliation(s)
- Mayuri Dutta
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Jyotismita Bora
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Bolin Chetia
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam, 786004, India.
| |
Collapse
|
14
|
Ashraf G, Ahmad T, Ahmed MZ, Murtaza, Rasmi Y. Advances in Metal-organic Frameworks (MOFs) based Biosensors for Diagnosis: An Update. Curr Top Med Chem 2022; 22:2222-2240. [PMID: 36043769 DOI: 10.2174/1568026622666220829125548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/09/2022] [Accepted: 06/29/2022] [Indexed: 11/22/2022]
Abstract
Metal-organic frameworks (MOFs) have significant advantages over other candidate classes of chemo-sensory materials owing to their extraordinary structural tunability and characteristics. MOF-based biosensing is a simple and convenient method for identifying various species. Biomarkers are molecular or cellular processes that link environmental exposure to a health outcome. Biomarkers are important in understanding the links between environmental chemical exposure and the development of chronic diseases, as well as in identifying disease-prone subgroups. Until now, several species, including nanoparticles (NPs) and their nanocomposites, small molecules, and unique complex systems, have been used for the chemical sensing of biomarkers. Following the overview of the field, we discussed the various fabrication methods for MOFs development in this review. We provide a thorough overview of the previous five years of progress to broaden the scope of analytes for future research. Several enzymatic and non-enzymatic sensors are offered, together with a mandatory measuring method that includes detection range and dynamic range. In addition, we reviewed the comparison of enzymatic and non-enzymatic biosensors, inventive edges, and the difficulties that need to be solved. This work might open up new possibilities for material production, sensor development, medical diagnostics, and other sensing fields.
Collapse
Affiliation(s)
- Ghazala Ashraf
- Department of Biomedical Engineering, Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P.R. China
| | - Tauqir Ahmad
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | | | - Murtaza
- Department of Chemical Sciences, University of Lakki Marwat, 28420, Khyber Pakhtunkhwa, Pakistan
| | - Yousef Rasmi
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|