1
|
Mustafa F, Sajjad A, Tahir R, Ali M, Sajjad M, Abbasi A, Khan EU, Zafar S, Hashem A, Avila-Quezada GD, Abd_Allah EF. Use of Periplaneta americana as a Soybean Meal Substitute: A Step towards Sustainable Transformative Poultry Feeds. INSECTS 2024; 15:632. [PMID: 39336600 PMCID: PMC11432002 DOI: 10.3390/insects15090632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024]
Abstract
Insects are becoming increasingly popular as a sustainable and nutritious alternative protein source in poultry feeds, due to their high protein content, low environmental impact, and efficient feed conversion rates. Using insect-based feeds can reduce the need for traditional protein sources like soybean meal (SBM), which often contribute to environmental issues such as deforestation and high water consumption. The current experiments were devised to assess the impacts of the partial replacement of SBM with the American cockroach Periplaneta americana and black soldier fly Hermetia illucens on the performances, hematology, gut morphometry, and meat quality of male broilers (Ross 308). A total of 350, 1-day-old chicks weighing 40.05 ± 0.27 g were divided into 7 dietary treatments (5 pens/treatment and 10 birds/pen) at random, i.e., a 4, 8, or 12% SMB replacement with P. americana and H. illucens. Soybean meal was used as a basal diet and taken as a control. The results indicated that broilers fed on 12% P. americana or H. illucens showed significant improvements (p < 0.05) in feed conversion ratio, live weight, and daily weight gain. Hematological traits significantly improved (p < 0.05). A gut histology showed increased villus height, villus width, crypt depth, and villus height/crypt depth ratios, indicating improved nutrient absorption. Broiler meat fed on 12% P. americana meal had significantly higher redness and yellowness (p < 0.05). Substituting soybean meal with up to 12% P. americana or H. illucens meal in poultry feed can enhance the broilers' growth performance, hematology, gut morphometry, and meat quality. Hence, these findings imply that P. americana or H. illucens meal are viable and constructive alternative protein sources in poultry nutrition, offering a sustainable approach to meet the increasing demand for animal protein across the world.
Collapse
Affiliation(s)
- Farwa Mustafa
- Department of Entomology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Asif Sajjad
- Department of Entomology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Roughaina Tahir
- Department of Entomology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Mudssar Ali
- Institute of Plant Protection, Muhammad Nawaz Shareef University of Agriculture Multan, Multan 60000, Pakistan
| | - Muhammad Sajjad
- Department of Entomology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Asim Abbasi
- Department of Entomology, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Ehsaan Ullah Khan
- Department of Animal Nutrition, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Saba Zafar
- Department of Biochemistry and Biotechnology, The Women University Multan, Multan 66000, Pakistan
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | | | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Kulessa AK, Balzani P, Soto I, Kouba A, Renault D, Tarkan AS, Haubrock PJ. The neglect of nonnative orthopterans as potential invaders: A call for awareness. INSECT SCIENCE 2024; 31:994-1000. [PMID: 37822279 DOI: 10.1111/1744-7917.13277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 10/13/2023]
Abstract
Despite the potential ecological and economic impacts of invasive species, there is a dearth of data on the presence, impacts, and management implications of potentially invasive Orthoptera species. This lack of research and inconsistent data, including risk screenings and impact assessments, is especially evident in Europe. Consequently, assessing the status, distribution, and potential threats of nonnative Orthoptera in Europe remains challenging, impeding the development of effective management strategies. To address this gap, we call for increased efforts to collect and curate data on non-native and possibly invasive Orthoptera in Europe. Such efforts will improve our understanding of this order's invasion dynamics, facilitate the identification of priority areas for conservation, and support the development of effective management policies and preventive measures.
Collapse
Affiliation(s)
- Anna K Kulessa
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Bochum, Germany
- Faculty of Biology, University of Duisburg-Essen, Universitätsstraße 5, Essen, Germany
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Paride Balzani
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Ismael Soto
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Antonín Kouba
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - David Renault
- University of Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Evolution), UMR, Rennes, France
| | - Ali Serhan Tarkan
- Faculty of Fisheries, Department of Basic Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey
- Department of Life and Environmental Sciences, Bournemouth University, Poole, Dorset, UK
- Faculty of Biology and Environmental Protection, Department of Ecology and Vertebrate Zoology, University of Łodz, Łodz, Poland
| | - Phillip J Haubrock
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
- Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Mubarak Al-Abdullah, Kuwait
| |
Collapse
|
3
|
Sajjad M, Sajjad A, Chishti GA, Khan EU, Mozūraitis R, Binyameen M. Insect Larvae as an Alternate Protein Source in Poultry Feed Improve the Performance and Meat Quality of Broilers. Animals (Basel) 2024; 14:2053. [PMID: 39061515 PMCID: PMC11273481 DOI: 10.3390/ani14142053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The primary challenge facing the global animal industry is the scarcity of protein feed resources. Various insects are gaining prominence as innovative feed sources due to their economic, environmentally friendly, and nutritious attributes. The purpose of the present study was to determine the effects of a partial replacement of soybean meal with fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) and black soldier fly Hermetia illucens (Diptera: Stratiomyidae) on the growth performances, blood parameters, gut histology, and meat quality of broilers. A total of 350 1-day-old (40 ± 0.15 g) male chicks (Ross 308) were randomly assigned to seven experimental meals. Each treatment was repeated five times with 50 birds per dietary treatment. The seven dietary treatments included 4, 8, and 12% replacements of SBM with larvae of S. frugiperda and H. illucens. SBM was the basal diet considered the control. The data showed that broilers fed 12% S. frugiperda or H. illucens exhibited a significantly higher (p < 0.05) live weight, average daily weight gain, and improved the feed conversion ratio. Meals with 12% S. frugiperda or H. illucens significantly enhanced (p < 0.05) haematological and gut histological parameters, including villus height, crypt depth, villus width, and villus height/crypt depth ratios. The meat of broilers fed the 12% S. frugiperda diet showed significantly higher (p < 0.05) lightness and yellowness. Replacing soybean meal up to 12% with either S. frugiperda or H. illucens larvae improves the growth performance, blood haematology, gut morphometry, and meat quality traits of broilers.
Collapse
Affiliation(s)
- Muhammad Sajjad
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan;
- Department of Entomology, Faculty of Agriculture and Environment, Islamia University, Bahawalpur 63100, Pakistan;
| | - Asif Sajjad
- Department of Entomology, Faculty of Agriculture and Environment, Islamia University, Bahawalpur 63100, Pakistan;
| | - Ghazanfar Ali Chishti
- Department of Animal Nutrition, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (G.A.C.); (E.U.K.)
| | - Ehsaan Ullah Khan
- Department of Animal Nutrition, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (G.A.C.); (E.U.K.)
| | - Raimondas Mozūraitis
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Akademijos Str. 2, 08412 Vilnius, Lithuania
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691 Stockholm, Sweden
| | - Muhammad Binyameen
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan;
| |
Collapse
|
4
|
Nakagawa K, Ogino K, Katoh TK, Kono N. Species identification of livefood flightless fly ( Torinido-shoujoubae) through DNA barcoding. Ecol Evol 2024; 14:e11622. [PMID: 38979002 PMCID: PMC11229428 DOI: 10.1002/ece3.11622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/28/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
Torinido-shoujoubae, as it is called in Japanese, is a flightless Drosophila sp. that is sold commercially in Japan. This Drosophila sp. is often used as feeds for model organisms such as reptiles and spiders. There is no scientific name provided for the fruit fly that is known as Torinido-shoujoubae, as well as any historical background or data behind this species. There has been a previous study that was conducted through morphological characteristics analysis of the body as well as the male copulatory organ and has been estimated as Drosophila hydei. The objective of this study was to determine the species of this unidentified fly known as Torinido-shoujoubae based on a molecular evidence with a DNA barcoding. Samples were purchased from four separate suppliers to examine whether there are any differences between them. COI regions were amplified using PCR and the sequenced results were aligned against two databases, NCBI and BOLD. Torinido-shoujoubae samples provided from all suppliers were confirmed to be D. hydei.
Collapse
Affiliation(s)
- Koh Nakagawa
- Institute for Advanced BiosciencesKeio UniversityTsuruokaYamagataJapan
| | - Kaoru Ogino
- Institute for Advanced BiosciencesKeio UniversityTsuruokaYamagataJapan
- Faculty of Environment and Information StudiesKeio UniversityFujisawaKanagawaJapan
| | - Takehiro K. Katoh
- Department of Biological SciencesTokyo Metropolitan UniversityHachiojiTokyoJapan
| | - Nobuaki Kono
- Institute for Advanced BiosciencesKeio UniversityTsuruokaYamagataJapan
- Faculty of Environment and Information StudiesKeio UniversityFujisawaKanagawaJapan
- Graduate School of Media and GovernanceKeio UniversityFujisawaKanagawaJapan
| |
Collapse
|
5
|
Kulessa AK, Balzani P, Soto I, Toutain M, Haubrock PJ, Kouba A. Assessing the potential phytosanitary threat of the house cricket Acheta domesticus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170376. [PMID: 38281629 DOI: 10.1016/j.scitotenv.2024.170376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/20/2024] [Accepted: 01/21/2024] [Indexed: 01/30/2024]
Abstract
Phytosanitary threats can pose substantial risks to global agriculture and ecological systems, affecting biodiversity, human well-being, and food security. Meanwhile, global warming is projected to exacerbate these threats in the future. One in Europe already widely distributed potential phytosanitary threat that may benefit from global warming is the house cricket Acheta domesticus. This study explored the potential of A. domesticus as a relevant non-native phytosanitary threat under changing climatic conditions by conducting a series of functional response experiments across a temperature gradient (20, 25, and 30 °C). Acheta domesticus exhibited comparable patterns of seed consumption and functional responses. Seed type (millet seeds, wheat grains) and temperature increase influenced the damage inflicted on seeds, with softer and smaller seeds being more susceptible to damage, further amplified by warmer temperatures. The study's outcomes underline the phytosanitary threat that A. domesticus may pose. Considering the species' established presence and adaptable nature in urban environments exacerbates the potential for A. domesticus to transition to rural and agricultural areas. Its increasing production as a food item, paired with the here-identified potential to damage seeds, emphasizes the need for proactive and science-based strategies to address emerging phytosanitary threats driven by non-native species under changing climatic conditions. As global temperatures continue to rise, the assessment and management of potential pest species like A. domesticus will be crucial for safeguarding agriculture productivity and ecological balance.
Collapse
Affiliation(s)
- Anna K Kulessa
- Ruhr University Bochum, Faculty of Biology and Biotechnology, 44801 Bochum, Germany; University of Duisburg-Essen, Faculty of Biology, 45141 Essen, Germany; Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, 389 25 Vodňany, Czech Republic.
| | - Paride Balzani
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, 389 25 Vodňany, Czech Republic
| | - Ismael Soto
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, 389 25 Vodňany, Czech Republic
| | - Mathieu Toutain
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, 389 25 Vodňany, Czech Republic; Université de Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], 35000 Rennes, France
| | - Phillip J Haubrock
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, 389 25 Vodňany, Czech Republic; Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, 63571 Gelnhausen, Germany; CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hallawy 32093, Kuwait
| | - Antonín Kouba
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, 389 25 Vodňany, Czech Republic
| |
Collapse
|
6
|
Teixeira CSS, Biltes R, Villa C, Sousa SF, Costa J, Ferreira IMPLVO, Mafra I. Exploiting Locusta migratoria as a source of bioactive peptides with anti-fibrosis properties using an in silico approach. Food Funct 2024; 15:493-502. [PMID: 38099620 DOI: 10.1039/d3fo04246d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Edible insects have been proposed as an environmentally and economically sustainable source of protein, and are considered as an alternative food, especially to meat. The migratory locust, Locusta migratoria, is an edible species authorised by the European Union as a novel food. In addition to their nutritional value, edible insects are also sources of bioactive compounds. This study used an in silico approach to simulate the gastrointestinal digestion of selected L. migratoria proteins and posteriorly identify peptides capable of selectively inhibiting the N-subunit of the somatic angiotensin-I converting enzyme (sACE). The application of the molecular docking protocol enabled the identification of three peptides, namely TCDSL, IDCSR and EAEEGQF, which were predicted to act as potential selective inhibitors of the sACE N-domain and, therefore, possess bioactivity against cardiac and pulmonary fibrosis.
Collapse
Affiliation(s)
- Carla S S Teixeira
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Rita Biltes
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Caterina Villa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Sérgio F Sousa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, BioSIM - Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Isabel M P L V O Ferreira
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
7
|
Teixeira CSS, Villa C, Costa J, Ferreira IMPLVO, Mafra I. Edible Insects as a Novel Source of Bioactive Peptides: A Systematic Review. Foods 2023; 12:2026. [PMID: 37238844 PMCID: PMC10216942 DOI: 10.3390/foods12102026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/13/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
The production of food and feed to meet the needs of the growing world's population will soon become a serious challenge. In search for sustainable solutions, entomophagy is being proposed as an alternative source of proteins, with economic and environmental advantages when compared to meat. Edible insects are not only a valuable source of important nutrients, but their gastrointestinal digestion also originates small peptides with important bioactive properties. The present work intends to provide an exhaustive systematic review on research articles reporting bioactive peptides identified from edible insects, as demonstrated by in silico, in vitro, and/or in vivo assays. A total of 36 studies were identified following the PRISMA methodology, gathering 211 potentially bioactive peptides with antioxidant, antihypertensive, antidiabetic, antiobesity, anti-inflammatory, hypocholesterolemia, antimicrobial, anti-severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), antithrombotic, and immunomodulatory properties, originated from the hydrolysates of 12 different insect species. From these candidates, the bioactive properties of 62 peptides were characterized in vitro and 3 peptides were validated in vivo. Data establishing the scientific basis of the health benefits associated with the consumption of edible insects can be a valuable contribution to overcoming the cultural issues that hinder the introduction of insects in the Western diet.
Collapse
Affiliation(s)
| | | | | | | | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (C.S.S.T.); (C.V.); (J.C.); (I.M.P.L.V.O.F.)
| |
Collapse
|
8
|
Michalska K, Mrowińska A, Studnicki M. Ectoparasitism of the Flightless Drosophila melanogaster and D. hydei by the Mite Blattisocius mali (Acari: Blattisociidae). INSECTS 2023; 14:146. [PMID: 36835715 PMCID: PMC9961106 DOI: 10.3390/insects14020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Predatory mites dispersing by means of insects are often ectoparasites and may use various tactics to get onto the host, counteract its defenses, and diminish its survival. Blattisocius mali is a promising biological control agent which has been reported as transported by several drosophilid species. Our goal was to determine the type of relationship between this mite and fruit flies. We used flightless females of Drosophila melanogaster and D. hydei, which were commercially raised as live pet food. The predatory females mostly attacked the tarsi of the flies and then preferentially moved to the cervix or close to coxa III, where they eventually drilled their chelicerae and started feeding. Although both fly species used similar defensive tactics, more B. mali females did not attack D. hydei or did so with a delay, and a higher percentage of mites fell off the D. hydei tarsi during the first hour of observation. After 24 h, we noted the increased mortality of flies exposed to the presence of mites. Our study indicates the ectoparasitic relationship of B. mali with drosophilids. However, further research is needed to confirm the transport of this mite on wild D. hydei and D. melanogaster, both in the laboratory and under natural conditions.
Collapse
Affiliation(s)
- Katarzyna Michalska
- Section of Applied Entomology, Department of Plant Protection, Institute of Horticulture Sciences, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Agnieszka Mrowińska
- Section of Applied Entomology, Department of Plant Protection, Institute of Horticulture Sciences, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Marcin Studnicki
- Department of Biometry, Institute of Agriculture, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|